Patents by Inventor Arpan Chakraborty

Arpan Chakraborty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100193911
    Abstract: A method for growing reduced defect density planar gallium nitride (GaN) films is disclosed. The method includes the steps of (a) growing at least one silicon nitride (SiNx) nanomask layer over a GaN template, and (b) growing a thickness of a GaN film on top of the SiNx nanomask layer.
    Type: Application
    Filed: April 14, 2010
    Publication date: August 5, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Arpan Chakraborty, Kwang-Choong Kim, James S. Speck, Steven P. DenBaars, Umesh K. Mishra
  • Publication number: 20100195684
    Abstract: A method for fabricating a semiconductor laser device, by etching facets using a photoelectrochemical (PEC) etch, so that the facets are sufficiently smooth to support optical modes within a cavity bounded by the facets.
    Type: Application
    Filed: February 1, 2010
    Publication date: August 5, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Adele C. Tamboli, Evelyn L. Hu, Steven P. DenBaars, Arpan Chakraborty
  • Patent number: 7769066
    Abstract: A laser diode and method for fabricating same, wherein the laser diode generally comprises an InGaN compliance layer on a GaN n-type contact layer and an AlGaN/GaN n-type strained super lattice (SLS) on the compliance layer. An n-type GaN separate confinement heterostructure (SCH) is on said n-type SLS and an InGaN multiple quantum well (MQW) active region is on the n-type SCH. A GaN p-type SCH on the MQW active region, an AlGaN/GaN p-type SLS is on the p-type SCH, and a p-type GaN contact layer is on the p-type SLS. The compliance layer has an In percentage that reduces strain between the n-type contact layer and the n-type SLS compared to a laser diode without the compliance layer. Accordingly, the n-type SLS can be grown with an increased Al percentage to increase the index of refraction. This along with other features allows for reduced threshold current and voltage operation.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: August 3, 2010
    Assignee: Cree, Inc.
    Inventors: Arpan Chakraborty, Monica Hansen, Steven Denbaars, Shuji Nakamura, George Brandes
  • Patent number: 7723216
    Abstract: A method for growing reduced defect density planar gallium nitride (GaN) films is disclosed. The method includes the steps of (a) growing at least one silicon nitride (SiNx) nanomask layer over a GaN template, and (b) growing a thickness of a GaN film on top of the SiNx nanomask layer.
    Type: Grant
    Filed: May 9, 2007
    Date of Patent: May 25, 2010
    Assignee: The Regents of the University of California
    Inventors: Arpan Chakraborty, Kwang-Choong Kim, James S. Speck, Steven P. DenBaars, Umesh K. Mishra
  • Publication number: 20100079059
    Abstract: A solid state lighting apparatus includes a plurality of light emitting diodes (LEDs) including at least a first LED and a second LED. Chromaticities of the first and second LEDs are selected so that a combined light generated by a mixture of light from the pair of LEDs has about a target chromaticity. The first LED may include a first LED chip that emits light in the blue portion of the visible spectrum and a phosphor that emits red light in response to blue light emitted by the first LED chip. The second LED emits light having a color point that is above the planckian locus of a 1931 CIE Chromaticity diagram, and in particular may have a yellow green, greenish yellow or green hue.
    Type: Application
    Filed: June 25, 2009
    Publication date: April 1, 2010
    Inventors: John Roberts, Gerald H. Negley, Antony P. van de Ven, Arpan Chakraborty, Bernd Keller, Ronan P. Le Toquin
  • Patent number: 7682944
    Abstract: A substrate comprising a trench lateral epitaxial overgrowth structure including a trench cavity, wherein the trench cavity includes a growth-blocking layer or patterned material supportive of a coalescent Pendeo layer thereon, on at least a portion of an inside surface of the trench. Such substrate is suitable for carrying out lateral epitaxial overgrowth to form a bridged lateral overgrowth formation overlying the trench cavity. The bridged lateral overgrowth formation provides a substrate surface on which epitaxial layers can be grown in the fabrication of microelectronic devices such as laser diodes, high electron mobility transistors, ultraviolet light emitting diodes, and other devices in which low dislocation density is critical. The epitaxial substrate structures of the invention can be formed without the necessity for deep trenches, such as are required in conventional Pendeo epitaxial overgrowth structures.
    Type: Grant
    Filed: December 14, 2007
    Date of Patent: March 23, 2010
    Assignee: Cree, Inc.
    Inventors: George R. Brandes, Arpan Chakraborty, Shuji Nakamura, Monica Hansen, Steven Denbaars
  • Publication number: 20090272996
    Abstract: An improved light emitting device, especially a phosphor-converted white light device, wherein the light extraction efficiency and the color temperature distribution uniformity are improved by the introduction of both nanoparticles and light scattering particles proximate to the light source. Nanoparticles having a high index of refraction are dispersed throughout a wavelength conversion layer to adjust the index of refraction of the layer for improved light extraction. Light scattering particles may be dispersed in the wavelength conversion layer and/or in a surrounding medium to improve the spatial correlated color temperature uniformity.
    Type: Application
    Filed: May 2, 2008
    Publication date: November 5, 2009
    Inventor: Arpan Chakraborty
  • Publication number: 20090256163
    Abstract: Methods for fabricating LED chips from a wafer and devices fabricated using the methods with one method comprising depositing LED epitaxial layers on an LED growth wafer to form a plurality of LEDs on the growth wafer. A single crystalline phosphor is bonded over at least some the plurality of LEDs so that at least some light from the covered LEDs passes through the single crystalline phosphor and is converted. The LED chips can then be singulated from the wafer to provide LED chips each having a portion of said single crystalline phosphor to convert LED light.
    Type: Application
    Filed: April 10, 2008
    Publication date: October 15, 2009
    Inventor: Arpan Chakraborty
  • Publication number: 20090236621
    Abstract: A light emitting diode (LED) device having a low index of refraction spacer layer separating the LED chip and a functional layer. The LED chip has a textured light emission surface to increase light extraction from the chip. The spacer layer has an index of refraction that is lower than both the LED chip and the functional layer. Most of the light generated in the LED chip passes easily into the spacer layer due to the textured surface of the chip. At the interface of the spacer layer and the functional layer the light sees a step-up in index of refraction which facilitates transmission. A portion of the light that has passed into the functional layer will be reflected or scattered back toward the spacer layer where some of it will experience total internal reflection. Total internal reflection at this interface may increase extraction efficiency by reducing the amount of light that re-enters the spacer layer and, ultimately, the LED chip where it may be absorbed.
    Type: Application
    Filed: March 19, 2008
    Publication date: September 24, 2009
    Inventor: Arpan Chakraborty
  • Publication number: 20090230411
    Abstract: The present invention discloses a plurality of interdigitated pixels arranged in an array, having a very low series-resistances with improved current spreading and improved heat-sinking. Each pixel is a square with sides of dimension l. The series resistance is minimized by increasing the perimeter of an active region for the pixels. The series resistance is also minimized by shrinking the space between a mesa and n-contact for each pixel.
    Type: Application
    Filed: April 7, 2009
    Publication date: September 17, 2009
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Arpan Chakraborty, Likun Shen, Umesh K. Mishra
  • Publication number: 20090194775
    Abstract: A packaged light emitting device (LED) includes a light emitting diode configured to emit primary light having a peak wavelength that is less than about 465 nm and having a shoulder emission component at a wavelength that is greater than the peak wavelength, and a wavelength conversion material configured to receive the primary light emitted by the light emitting diode and to responsively emit light having a color point with a ccx greater than about 0.4 and a ccy less than about 0.6.
    Type: Application
    Filed: February 1, 2008
    Publication date: August 6, 2009
    Inventor: Arpan Chakraborty
  • Publication number: 20090173958
    Abstract: A light emitting device includes a light emitting die configured to emit light having a first dominant wavelength, and an index matched wavelength conversion structure configured to receive light emitted by the light emitting die. The index matched wavelength conversion structure includes wavelength converting particles having a first index of refraction embedded in a matrix material. The matrix material has a second index of refraction that may be substantially matched to the first index of refraction. The light emitting device may include a graded index layer having an index of refraction that is continuously graded from a first index of refraction in a first region of the graded index layer near the light emitting die to a second index of refraction in the graded index layer away from the light emitting die.
    Type: Application
    Filed: January 4, 2008
    Publication date: July 9, 2009
    Inventors: Arpan Chakraborty, Bernd Keller
  • Publication number: 20090152565
    Abstract: A substrate comprising a trench lateral epitaxial overgrowth structure including a trench cavity, wherein the trench cavity includes a growth-blocking layer or patterned material supportive of a coalescent Pendeo layer thereon, on at least a portion of an inside surface of the trench. Such substrate is suitable for carrying out lateral epitaxial overgrowth to form a bridged lateral overgrowth formation overlying the trench cavity. The bridged lateral overgrowth formation provides a substrate surface on which epitaxial layers can be grown in the fabrication of microelectronic devices such as laser diodes, high electron mobility transistors, ultraviolet light emitting diodes, and other devices in which low dislocation density is critical. The epitaxial substrate structures of the invention can be formed without the necessity for deep trenches, such as are required in conventional Pendeo epitaxial overgrowth structures.
    Type: Application
    Filed: December 14, 2007
    Publication date: June 18, 2009
    Inventors: George R. Brandes, Arpan Chakraborty, Shuji Nakamura, Monica Hansen, Steven Denbaars
  • Publication number: 20090146162
    Abstract: A method for the fabrication of nonpolar indium gallium nitride (InGaN) films as well as nonpolar InGaN-containing device structures using metalorganic chemical vapor deposition (MOVCD). The method is used to fabricate nonpolar InGaN/GaN violet and near-ultraviolet light emitting diodes and laser diodes.
    Type: Application
    Filed: February 12, 2009
    Publication date: June 11, 2009
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Arpan Chakraborty, Benjamin A. Haskell, Stacia Keller, James Stephen Speck, Steven P. DenBaars, Shuji Nakamura, Umesh Kumar Mishra
  • Patent number: 7518305
    Abstract: The present invention discloses a plurality of interdigitated pixels arranged in an array, having a very low series-resistances with improved current spreading and improved heat-sinking. Each pixel is a square with sides of dimension l. The series resistance is minimized by increasing the perimeter of an active region for the pixels. The series resistance is also minimized by shrinking the space between a mesa and n-contact for each pixel.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: April 14, 2009
    Assignee: The Regents of the University of California
    Inventors: Arpan Chakraborty, Likun Shen, Umesh K. Mishra
  • Publication number: 20090072254
    Abstract: A light emitting device comprising a three-dimensional polarization-graded (3DPG) structure that improves lateral current spreading within the device without introducing additional dopant impurities in the epitaxial structures. The 3DPG structure can include a repeatable stack unit that may be repeated several times within the 3DPG. The stack unit includes a compositionally graded layer and a silicon (Si) delta-doped layer. The graded layer is compositionally graded over a distance from a first material to a second material, introducing a polarization-induced bulk charge into the structure. The Si delta-doped layer compensates for back-depletion of the electron gas at the interface of the graded layers and adjacent layers. The 3DPG facilitates lateral current spreading so that current is injected into the entire active region, increasing the number of radiative recombination events in the active region and improving the external quantum efficiency and the wall-plug efficiency of the device.
    Type: Application
    Filed: September 14, 2007
    Publication date: March 19, 2009
    Inventor: Arpan Chakraborty
  • Patent number: 7504274
    Abstract: A method for the fabrication of nonpolar indium gallium nitride (InGaN) films as well as nonpolar InGaN-containing device structures using metalorganic chemical vapor deposition (MOVCD). The method is used to fabricate nonpolar InGaN/GaN violet and near-ultraviolet light emitting diodes and laser diodes.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: March 17, 2009
    Assignees: The Regents of the University of California, The Japan Science and Technology Agency
    Inventors: Arpan Chakraborty, Benjamin A. Haskell, Stacia Keller, James S. Speck, Steven P. DenBaars, Shuji Nakamura, Umesh K. Mishra
  • Publication number: 20090057690
    Abstract: Methods for wafer level fabricating of light emitting diode (LED) chips are disclosed with one embodiment of a method according to the present invention comprising providing a plurality of LEDs and then coating of the LEDs with a layer of first conversion material so that at least some light from the LEDs passes through the first conversion material. The light is converted to different wavelengths of light having a first conversion material emission spectrum. The LEDs are then coated with a layer of second conversion material arranged on the first layer of conversion. The second conversion material has a wavelength excitation spectrum, and at least some light from the LEDs passes through the second conversion material and is converted. The first conversion material emission spectrum does not substantially overlap with the second conversion material excitation spectrum.
    Type: Application
    Filed: October 13, 2008
    Publication date: March 5, 2009
    Inventor: Arpan Chakraborty
  • Publication number: 20090050911
    Abstract: A radiation emitting device comprising light scattering particles of different sizes that at least partially surround an emitter, improving the spatial color mixing and color uniformity of the device. Multiple sizes of light scattering particles are dispersed in a medium to at least partially surround a single- or multiple-chip polychromatic emitter package. The different sizes of light scattering particles interact with corresponding wavelength ranges of emitted radiation. Thus, radiation emitted over multiple wavelength ranges or sub-ranges can be efficiently scattered to eliminate (or intentionally create) spatially non-uniform color patterns in the output beam.
    Type: Application
    Filed: August 24, 2007
    Publication date: February 26, 2009
    Inventor: Arpan Chakraborty
  • Publication number: 20080308825
    Abstract: A light emitting device having an encapsulant with scattering features to tailor the spatial emission pattern and color temperature uniformity of the output profile. The encapsulant is formed with materials having light scattering properties. The concentration of these light scatterers is varied spatially within the encapsulant and/or on the surface of the encapsulant. The regions having a high density of scatterers are arranged in the encapsulant to interact with light entering the encapsulant over a desired range of source emission angles. By increasing the probability that light from a particular range of emission angles will experience at least one scattering event, both the intensity and color temperature profiles of the output light beam can be tuned.
    Type: Application
    Filed: June 14, 2007
    Publication date: December 18, 2008
    Inventors: Arpan Chakraborty, Bernd Keller