Patents by Inventor Arpurv U. Kamath

Arpurv U. Kamath has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11589823
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: February 28, 2023
    Assignee: Dexcom, Inc.
    Inventors: Paul V. Goode, James H. Brauker, Arpurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel
  • Publication number: 20190365330
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.
    Type: Application
    Filed: August 13, 2019
    Publication date: December 5, 2019
    Inventors: Paul V. Goode, James H. Brauker, Arpurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel
  • Publication number: 20180296164
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.
    Type: Application
    Filed: June 18, 2018
    Publication date: October 18, 2018
    Inventors: Paul V. Goode, James H. Brauker, Arpurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel
  • Publication number: 20180168513
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.
    Type: Application
    Filed: February 12, 2018
    Publication date: June 21, 2018
    Inventors: Paul V. Goode, James H. Brauker, Arpurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel
  • Patent number: 9750460
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: September 5, 2017
    Assignee: DexCom, Inc.
    Inventors: Paul V. Goode, James H. Brauker, Arpurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel
  • Publication number: 20170245801
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.
    Type: Application
    Filed: May 15, 2017
    Publication date: August 31, 2017
    Inventors: Paul V. Goode, James H. Brauker, Arpurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel
  • Publication number: 20170245802
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.
    Type: Application
    Filed: May 15, 2017
    Publication date: August 31, 2017
    Inventors: Paul V. Goode, James H. Brauker, Arpurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel
  • Publication number: 20170215805
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.
    Type: Application
    Filed: April 14, 2017
    Publication date: August 3, 2017
    Inventors: Paul V. Goode, James H. Brauker, Arpurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel
  • Publication number: 20170209101
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.
    Type: Application
    Filed: April 6, 2017
    Publication date: July 27, 2017
    Inventors: Paul V. Goode, James H. Brauker, Arpurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel
  • Patent number: 9649069
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: May 16, 2017
    Assignee: DexCom, Inc.
    Inventors: Paul V. Goode, James H. Brauker, Arpurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel
  • Publication number: 20160302731
    Abstract: Systems and methods for minimizing or eliminating transient non-glucose related signal noise due to non-glucose rate limiting phenomenon such as ischemia, pH changes, temperatures changes, and the like. The system monitors a data stream from a glucose sensor and detects signal artifacts that have higher amplitude than electronic or diffusion-related system noise. The system replaces some or the entire data stream continually or intermittently including signal estimation methods that particularly address transient signal artifacts. The system is also capable of detecting the severity of the signal artifacts and selectively applying one or more signal estimation algorithm factors responsive to the severity of the signal artifacts, which includes selectively applying distinct sets of parameters to a signal estimation algorithm or selectively applying distinct signal estimation algorithms.
    Type: Application
    Filed: June 29, 2016
    Publication date: October 20, 2016
    Inventors: Paul V. Goode, James H. Brauker, Arpurv U. Kamath, James Patrick Thrower, Victoria Carr-Brendel