Patents by Inventor Arran James Holloway

Arran James Holloway has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11591049
    Abstract: A method of deploying autonomous underwater vehicles (AUVs), the method comprising loading the AUVs into a deployment device; submerging the deployment device containing the AUVs after the AUVs have been loaded into the deployment device; towing the submerged deployment device containing the AUVs with a surface vessel; deploying the AUVs from the submerged deployment device as it is towed by the surface vessel; and operating a thruster of each AUV after it has been deployed so that it moves away from the submerged deployment device. A method of retrieving autonomous underwater vehicles (AUVs) is also disclosed, the method comprising towing a submerged retrieval device with a surface vessel; loading the AUVs into the submerged retrieval device as it is towed by the surface vessel; and after the AUVs have been loaded into the submerged retrieval device, lifting the submerged retrieval device containing the AUVs out of the water and onto the surface vessel.
    Type: Grant
    Filed: December 14, 2020
    Date of Patent: February 28, 2023
    Assignee: AUTONOMOUS ROBOTICS LIMITED
    Inventors: David Alexander William Grant, Arran James Holloway
  • Publication number: 20210094656
    Abstract: A method of deploying autonomous underwater vehicles (AUVs), the method comprising loading the AUVs into a deployment device; submerging the deployment device containing the AUVs after the AUVs have been loaded into the deployment device; towing the submerged deployment device containing the AUVs with a surface vessel; deploying the AUVs from the submerged deployment device as it is towed by the surface vessel; and operating a thruster of each AUV after it has been deployed so that it moves away from the submerged deployment device. A method of retrieving autonomous underwater vehicles (AUVs) is also disclosed, the method comprising towing a submerged retrieval device with a surface vessel; loading the AUVs into the submerged retrieval device as it is towed by the surface vessel; and after the AUVs have been loaded into the submerged retrieval device, lifting the submerged retrieval device containing the AUVs out of the water and onto the surface vessel.
    Type: Application
    Filed: December 14, 2020
    Publication date: April 1, 2021
    Inventors: David Alexander William Grant, Arran James Holloway
  • Patent number: 10894582
    Abstract: A method of deploying autonomous underwater vehicles (AUVs), the method comprising loading the AUVs into a deployment device; submerging the deployment device containing the AUVs after the AUVs have been loaded into the deployment device; towing the submerged deployment device containing the AUVs with a surface vessel; deploying the AUVs from the submerged deployment device as it is towed by the surface vessel; and operating a thruster of each AUV after it has been deployed so that it moves away from the submerged deployment device. A method of retrieving autonomous underwater vehicles (AUVs) is also disclosed, the method comprising towing a submerged retrieval device with a surface vessel; loading the AUVs into the submerged retrieval device as it is towed by the surface vessel; and after the AUVs have been loaded into the submerged retrieval device, lifting the submerged retrieval device containing the AUVs out of the water and onto the surface vessel.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: January 19, 2021
    Assignee: AUTONOMOUS ROBOTICS LIMITED
    Inventors: David Alexander William Grant, Arran James Holloway, James Charles Hill, William James Birdsall
  • Patent number: 10543891
    Abstract: A method of obtaining data with a sensor of an autonomous underwater vehicle (AUV), the AUV comprising a bladder which contains a gas and is exposed to ambient water pressure. A downward thrust force is generated which causes the AUV to descend through a body of water, wherein the bladder contracts as the AUV descends due to an associated increase in the ambient water pressure, the contraction of the bladder causing the gas to compress and the AUV to become negatively buoyant. Next the AUV lands on a bed of the body of water. After the AUV has landed on the bed, the sensor is operated to obtain data with the AUV stationary and negatively buoyant and a weight of the AUV supported by the bed.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: January 28, 2020
    Assignee: Autonomous Robotics Limited
    Inventors: Craig Paul Smith, Arran James Holloway
  • Patent number: 10472035
    Abstract: An underwater vehicle comprising: port and starboard thrusters spaced apart in a port- starboard direction, each thruster being oriented to generate a thrust force in a fore-aft direction perpendicular to the port-starboard direction; a vertical thruster which is oriented to generate a thrust force substantially perpendicular to the fore-aft and port- starboard directions; port, starboard and vertical ducts which contain the port, starboard and vertical thrusters respectively, each duct providing a channel for water to flow through its respective thruster; and a moving mass which can be moved relative to the thrusters in the fore-aft direction to control a pitch of the underwater vehicle.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: November 12, 2019
    Assignee: AUTONOMOUS ROBOTICS LIMITED
    Inventors: David Alexander William Grant, Arran James Holloway
  • Patent number: 10427763
    Abstract: A submersible device (2) for deploying or retrieving autonomous underwater vehicles (AUVs), the submersible device comprising: two or more platforms (130) arranged in a stack (3a, 3b), wherein each platform is configured to carry two or more of the AUVs; a port (300, 310); and a transfer mechanism (200) comprising a transfer device (210) arranged to load or unload the AUVs onto or from the platforms, and an actuator arranged to move the transfer device between the platforms and the port in order to transfer the AUVs between the platforms and the port.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: October 1, 2019
    Assignee: Autonomous Robotics Limited
    Inventors: David Alexander William Grant, Arran James Holloway, James Charles Hill, William James Birdsall
  • Publication number: 20180346082
    Abstract: A method of obtaining data with a sensor of an autonomous underwater vehicle (AUV), the AUV comprising a bladder which contains a gas and is exposed to ambient water pressure. A downward thrust force is generated which causes the AUV to descend through a body of water, wherein the bladder contracts as the AUV descends due to an associated increase in the ambient water pressure, the contraction of the bladder causing the gas to compress and the AUV to become negatively buoyant. Next the AUV lands on a bed of the body of water. After the AUV has landed on the bed, the sensor is operated to obtain data with the AUV stationary and negatively buoyant and a weight of the AUV supported by the bed.
    Type: Application
    Filed: August 9, 2016
    Publication date: December 6, 2018
    Applicant: Autonomous Robototics Limited
    Inventors: Craig Paul Smith, Arran James Holloway
  • Publication number: 20180319463
    Abstract: A method of deploying autonomous underwater vehicles (AUVs), the method comprising loading the AUVs into a deployment device; submerging the deployment device containing the AUVs after the AUVs have been loaded into the deployment device; towing the submerged deployment device containing the AUVs with a surface vessel; deploying the AUVs from the submerged deployment device as it is towed by the surface vessel; and operating a thruster of each AUV after it has been deployed so that it moves away from the submerged deployment device. A method of retrieving autonomous underwater vehicles (AUVs) is also disclosed, the method comprising towing a submerged retrieval device with a surface vessel; loading the AUVs into the submerged retrieval device as it is towed by the surface vessel; and after the AUVs have been loaded into the submerged retrieval device, lifting the submerged retrieval device containing the AUVs out of the water and onto the surface vessel.
    Type: Application
    Filed: October 14, 2016
    Publication date: November 8, 2018
    Inventors: DAVID ALEXANDER WILLIAM GRANT, Arran James HOLLOWAY, James Charles HILL, William James BIRDSALL
  • Publication number: 20180304977
    Abstract: A submersible device (2) for deploying or retrieving autonomous underwater vehicles (AUVs), the submersible device comprising: two or more platforms (130) arranged in a stack (3a, 3b), wherein each platform is configured to carry two or more of the AUVs; a port (300, 310); and a transfer mechanism (200) comprising a transfer device (210) arranged to load or unload the AUVs onto or from the platforms, and an actuator arranged to move the transfer device between the platforms and the port in order to transfer the AUVs between the platforms and the port.
    Type: Application
    Filed: October 14, 2016
    Publication date: October 25, 2018
    Inventors: David Alexander William GRANT, Arran James HOLLOWAY, James Charles HILL, William James BIRDSALL
  • Publication number: 20180297678
    Abstract: An underwater vehicle comprising: port and starboard thrusters spaced apart in a port-starboard direction, each thruster being oriented to generate a thrust force in a fore-aft direction perpendicular to the port-starboard direction; a vertical thruster which is oriented to generate a thrust force substantially perpendicular to the fore-aft and port-starboard directions; port, starboard and vertical ducts which contain the port, starboard and vertical thrusters respectively, each duct providing a channel for water to flow through its respective thruster; and a moving mass which can be moved relative to the thrusters in the fore-aft direction to control a pitch of the underwater vehicle.
    Type: Application
    Filed: October 14, 2016
    Publication date: October 18, 2018
    Inventors: David Alexander William GRANT, Arran James HOLLOWAY
  • Patent number: 9170319
    Abstract: A method of determining the position of an underwater node. The positions of three or more transmitters are determined. Each transmitter transmits at least four pulses, wherein a time difference between each pulse and a previous one of the pulses is proportional to a respective co-ordinate of the position of the transmitter. The pulses are received at the underwater node and decoded by measuring the delays between them, thereby determining the co-ordinates of the transmitters. The range of each transmitter relative to the underwater node is also determined. Finally the position of the underwater node is determined in accordance with the co-ordinates and ranges. Any errors in the measurements of the delays between the pulses only translate into small errors in the determined position because of the proportionality between the delays and the coordinates. Therefore if there is a gradual decrease of signal-to-noise ratio then the accuracy of the position estimate also degrades gradually.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: October 27, 2015
    Assignee: GO SCIENCE GROUP LTD
    Inventors: Harry George Dennis Gosling, Roman Lloyd Kingsland, Arran James Holloway
  • Publication number: 20150124565
    Abstract: A method of determining the position of an underwater node. The positions of three or more transmitters are determined. Each transmitter transmits at least four pulses, wherein a time difference between each pulse and a previous one of the pulses is proportional to a respective co-ordinate of the position of the transmitter. The pulses are received at the underwater node and decoded by measuring the delays between them, thereby determining the co-ordinates of the transmitters. The range of each transmitter relative to the underwater node is also determined. Finally the position of the underwater node is determined in accordance with the co-ordinates and ranges. Any errors in the measurements of the delays between the pulses only translate into small errors in the determined position because of the proportionality between the delays and the coordinates. Therefore if there is a gradual decrease of signal-to-noise ratio then the accuracy of the position estimate also degrades gradually.
    Type: Application
    Filed: February 28, 2013
    Publication date: May 7, 2015
    Inventors: Harry George Dennis Gosling, Roman Lloyd Kingsland, Arran James Holloway
  • Publication number: 20140292592
    Abstract: An annular vehicle having a body which defines a body axis and appears substantially annular when viewed along the body axis. The interior of the annulus defines a duct which is open at both ends. The vehicle includes an electric field (EF) coupled dipole antenna arrangement for electro-magnetic communications, which includes at least one dipole antenna. The vehicle is used as a node in an underwater communications system for communicating with other node(s) using their EF coupled dipole antenna arrangements. The electric field coupled dipole antenna arrangement can provide communications with lower latency than systems employing acoustic communications. The annular body provides good separation for electrodes of the EF coupled dipole antenna arrangement disposed around the body.
    Type: Application
    Filed: November 22, 2012
    Publication date: October 2, 2014
    Applicant: GO SCIENCE GROUP LTD.
    Inventors: Harry George Dennis Gosling, Arran James Holloway