Patents by Inventor Artem Kutikov

Artem Kutikov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190388581
    Abstract: This invention provides novel synthetic bone grafting materials or tissue engineering scaffolds with desired structural and biological properties (e.g., well-controlled macroporosities, spatially defined biological microenvironment, good handling characteristics, self-anchoring capabilities and shape memory properties) and methods of their applications in vivo.
    Type: Application
    Filed: June 6, 2019
    Publication date: December 26, 2019
    Inventors: Jie Song, Artem Kutikov
  • Publication number: 20160114077
    Abstract: This invention provides novel synthetic bone grafting materials or tissue engineering scaffolds with desired structural and biological properties (e.g., well-controlled macroporosities, spatially defined biological microenvironment, good handling characteristics, self-anchoring capabilities and shape memory properties) and methods of their applications in vivo.
    Type: Application
    Filed: May 30, 2014
    Publication date: April 28, 2016
    Inventors: Jie Song, Artem Kutikov
  • Patent number: 9259455
    Abstract: Cellulose and sulfated cellulose fibrous meshes exhibiting robust structural and mechanical integrity in water were fabricated using a combination of electrospinning, thermal-mechanical annealing and chemical modifications. The sulfated fibrous mesh exhibited higher retention capacity for human recombinant bone morphogenetic protein-2 than the cellulose mesh, and the retained proteins remained biologically active for at least 7 days. The sulfated fibrous mesh also more readily supported the attachment and osteogenic differentiation of rat bone marrow stromal cells in the absence of osteogenic growth factors. These properties combined make the sulfated cellulose fibrous mesh a promising bone tissue engineering scaffold.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: February 16, 2016
    Assignee: University of Massachusetts
    Inventors: Jie Song, Tera Marie Filion Potts, Artem Kutikov
  • Publication number: 20140088618
    Abstract: The invention provides novel compositions of hydroxyapatite and block co-polymers, methods of their preparation, and uses thereof, wherein the co-polymers have degradable hydrophobic blocks and hydrophilic blocks for stable interfacing with hydroxyapatite, resulting in stable polymer-hydroxyapatite suspensions. The super-hydrophilicity, strengthened mechanical integrity, and retained structural integrity of the HA-PELA composite in aqueous environment represent major advantages over the HA-PLA composites for skeletal tissue engineering applications.
    Type: Application
    Filed: September 21, 2012
    Publication date: March 27, 2014
    Inventors: Jie Song, Artem Kutikov
  • Publication number: 20120258160
    Abstract: Cellulose and sulfated cellulose fibrous meshes exhibiting robust structural and mechanical integrity in water were fabricated using a combination of electrospinning, thermal-mechanical annealing and chemical modifications. The sulfated fibrous mesh exhibited higher retention capacity for human recombinant bone morphogenetic protein-2 than the cellulose mesh, and the retained proteins remained biologically active for at least 7 days. The sulfated fibrous mesh also more readily supported the attachment and osteogenic differentiation of rat bone marrow stromal cells in the absence of osteogenic growth factors. These properties combined make the sulfated cellulose fibrous mesh a promising bone tissue engineering scaffold.
    Type: Application
    Filed: April 3, 2012
    Publication date: October 11, 2012
    Inventors: Jie Song, Tera Marie Fillion Potts, Artem Kutikov