Patents by Inventor Artem Mosesov

Artem Mosesov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230225678
    Abstract: The present disclosure is directed to a system and method for measuring impedance across a plurality of electrodes and assessing proximity or contact between electrodes of a medical device and patient tissue. In one embodiment, contact is assessed individual electrodes and cardiac tissue using bipolar electrode complex impedance measurements. Initially, baseline impedance values are established for each of the individual electrodes based on the responses of the electrodes to the applied drive signals. After establishing the baseline impedance values a series of subsequent impedance values are measured for each electrode. For each electrode, each subsequent impedance value may be compared to a previous baseline impedance value for that electrode. If a subsequent impedance value is less than the baseline impedance value for a given electrode, the baseline impedance value may be reset to the subsequent impedance value.
    Type: Application
    Filed: March 23, 2023
    Publication date: July 20, 2023
    Inventors: Artem Mosesov, Timothy G. Curran
  • Patent number: 11612334
    Abstract: A system and method measures impedance across a plurality of electrodes and assesses proximity or contact between electrodes of a medical device and patient tissue. Contact is assessed between individual electrodes and cardiac tissue using bipolar electrode complex impedance measurements. Initially, baseline impedance values are established for each of the individual electrodes based on the responses of the electrodes to the applied drive signals. After establishing the baseline impedance values a series of subsequent impedance values are measured for each electrode. For each electrode, each subsequent impedance value may be compared to a previous baseline impedance value for that electrode. If a subsequent impedance value is less than the baseline impedance value for a given electrode, the baseline impedance value may be reset to the subsequent impedance value. Such systems and method are particularly applicable to medical devices having numerous electrodes.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: March 28, 2023
    Assignee: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC.
    Inventors: Artem Mosesov, Timothy G. Curran
  • Patent number: 11612335
    Abstract: A system and method measures impedance across a plurality of electrodes and assesses proximity or contact between electrodes of a medical device and patient tissue. Contact is assessed between individual electrodes and cardiac tissue using bipolar electrode complex impedance measurements. Initially, baseline impedance values are established for each of the individual electrodes based on the responses of the electrodes to the applied drive signals. After establishing the baseline impedance values a series of subsequent impedance values are measured for each electrode. For each electrode, each subsequent impedance value may be compared to a previous baseline impedance value for that electrode. If a subsequent impedance value is less than the baseline impedance value for a given electrode, the baseline impedance value may be reset to the subsequent impedance value. Such systems and method are particularly applicable to medical devices having numerous electrodes.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: March 28, 2023
    Assignee: ST. JUDE MEDICAL, CARDIOLOGY DIVISION, INC.
    Inventors: Artem Mosesov, Timothy G. Curran
  • Patent number: 10799148
    Abstract: A method of detecting a localization element/sheath state change with a localization system includes establishing a localization field using a plurality of localization field generators, obtaining first and second localization signals from first and second catheter-borne localization elements within the localization field, respectively, comparing the quadrature components of the first and second localization signals, and detecting a localization element/sheath state change for one of the catheter-borne localization elements based on the comparison between quadrature components. For example, withdrawal of a localization element into an introducer sheath can be detected when the comparison between quadrature components exceeds a preset amount. Conversely, re-emergence of the localization element from the introducer sheath can be detected when the comparison between quadrature components returns below the preset amount.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: October 13, 2020
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Artem Mosesov, Anthony D. Hill, Birin Yucesan, Timothy G. Curran
  • Publication number: 20190274581
    Abstract: The present disclosure is directed to a system and method for measuring impedance across a plurality of electrodes and assessing proximity or contact between electrodes of a medical device and patient tissue. In one embodiment, contact is assessed individual electrodes and cardiac tissue using bipolar electrode complex impedance measurements. Initially, baseline impedance values are established for each of the individual electrodes based on the responses of the electrodes to the applied drive signals. After establishing the baseline impedance values a series of subsequent impedance values are measured for each electrode. For each electrode, each subsequent impedance value may be compared to a previous baseline impedance value for that electrode. If a subsequent impedance value is less than the baseline impedance value for a given electrode, the baseline impedance value may be reset to the subsequent impedance value.
    Type: Application
    Filed: May 28, 2019
    Publication date: September 12, 2019
    Inventors: Artem Mosesov, Timothy G. Curran
  • Publication number: 20190183378
    Abstract: The present disclosure is directed to a system and method for measuring impedance across a plurality of electrodes and assessing proximity or contact between electrodes of a medical device and patient tissue. In one embodiment, contact is assessed individual electrodes and cardiac tissue using bipolar electrode complex impedance measurements. Initially, baseline impedance values are established for each of the individual electrodes based on the responses of the electrodes to the applied drive signals. After establishing the baseline impedance values a series of subsequent impedance values are measured for each electrode. For each electrode, each subsequent impedance value may be compared to a previous baseline impedance value for that electrode. If a subsequent impedance value is less than the baseline impedance value for a given electrode, the baseline impedance value may be reset to the subsequent impedance value.
    Type: Application
    Filed: December 19, 2018
    Publication date: June 20, 2019
    Inventors: Artem Mosesov, Timothy G. Curran
  • Publication number: 20190167150
    Abstract: A method of detecting a localization element/sheath state change with a localization system includes establishing a localization field using a plurality of localization field generators, obtaining first and second localization signals from first and second catheter-borne localization elements within the localization field, respectively, comparing the quadrature components of the first and second localization signals, and detecting a localization element/sheath state change for one of the catheter-borne localization elements based on the comparison between quadrature components. For example, withdrawal of a localization element into an introducer sheath can be detected when the comparison between quadrature components exceeds a preset amount. Conversely, re-emergence of the localization element from the introducer sheath can be detected when the comparison between quadrature components returns below the preset amount.
    Type: Application
    Filed: December 18, 2018
    Publication date: June 6, 2019
    Inventors: Artem Mosesov, Anthony D. Hill, Birin Yucesan, Timothy G. Curran
  • Patent number: 10188314
    Abstract: A method of detecting a localization element/sheath state change with a localization system includes establishing a localization field using a plurality of localization field generators, obtaining first and second localization signals from first and second catheter-borne localization elements within the localization field, respectively, comparing the quadrature components of the first and second localization signals, and detecting a localization element/sheath state change for one of the catheter-borne localization elements based on the comparison between quadrature components. For example, withdrawal of a localization element into an introducer sheath can be detected when the comparison between quadrature components exceeds a preset amount. Conversely, re-emergence of the localization element from the introducer sheath can be detected when the comparison between quadrature components returns below the preset amount.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: January 29, 2019
    Assignee: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Artem Mosesov, Anthony D. Hill, Birin Yucesan, Timothy G. Curran
  • Publication number: 20160324441
    Abstract: A method of detecting a localization element/sheath state change with a localization system includes establishing a localization field using a plurality of localization field generators, obtaining first and second localization signals from first and second catheter-borne localization elements within the localization field, respectively, comparing the quadrature components of the first and second localization signals, and detecting a localization element/sheath state change for one of the catheter-borne localization elements based on the comparison between quadrature components. For example, withdrawal of a localization element into an introducer sheath can be detected when the comparison between quadrature components exceeds a preset amount. Conversely, re-emergence of the localization element from the introducer sheath can be detected when the comparison between quadrature components returns below the preset amount.
    Type: Application
    Filed: May 6, 2016
    Publication date: November 10, 2016
    Inventors: Artem Mosesov, Anthony D. Hill, Birin Yucesan, Timothy G. Curran