Patents by Inventor Arthur Abnous

Arthur Abnous has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8934527
    Abstract: A method for providing a next-cycle input sample from a decision feedback equalizer to a symbol decoder using look-ahead computations such that timing contention between the decision feedback equalizer and the symbol decoder is reduced. During a symbol period, a set of possible values is computed in the decision feedback equalizer and a set of path memory symbols is computed in the symbol decoder, the set of path memory symbols being based on a current input sample. During the same symbol period, one of the possible values is selected as the next-cycle input sample based on at least one of the next-cycle path memory symbols produced from the symbol decoder.
    Type: Grant
    Filed: June 15, 2010
    Date of Patent: January 13, 2015
    Assignee: Broadcom Corporation
    Inventors: Arthur Abnous, Avanindra Madisetti, Christian A. J. Lutkemeyer
  • Patent number: 8841963
    Abstract: Circuitry to remove switches from signal paths in integrated circuit programmable gain attenuators. Programmable gain attenuators and programmable gain amplifiers commonly switch between signal levels using semi-conductor switches. Such switches may introduce non-linearities in the signal. By isolating the switches from the signal path linearity of the PGA can be improved.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: September 23, 2014
    Assignee: Broadcom Corporation
    Inventors: Arya R. Behzad, Klaas Bult, Ramon A. Gomez, Chi-Hung Lin, Tom W. Kwan, Oscar E. Agazzi, John L. Creigh, Mehdi Hatamian, David E. Kruse, Arthur Abnous, Henry Samueli
  • Patent number: 8548089
    Abstract: A system and method for packet communication is disclosed. Echo in a received symbol stream may be reduced to produce an echo-reduced symbol stream. The echo-reduced symbol stream may be buffered and aligned according to a deskew signal to produce a deskewed symbol stream. The deskewed symbol stream may be decoded to produce a decoded packet.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: October 1, 2013
    Assignee: Broadcom Corporation
    Inventors: Oscar E. Agazzi, David Kruse, Arthur Abnous, Mehdi Hatamian
  • Patent number: 8451885
    Abstract: Various systems and methods providing high speed decoding, enhanced power reduction and clock domain partitioning for a multi-pair gigabit Ethernet transceiver are disclosed. ISI compensation is partitioned into two stages; a first stage compensates ISI components induced by characteristics of a transmitter's partial response pulse shaping filter in a demodulator, a second stage compensates ISI components induced by characteristics of a multi-pair transmission channel in a Viterbi decoder. High speed decoding is accomplished by reducing the DFE depth by providing an input signal from a multiple decision feedback equalizer to the Viterbi based on a tail value and a subset of coefficient values received from a unit depth decision-feedback equalizer. Power reduction is accomplished by adaptively truncating active taps in the NEXT, FEXT and echo cancellation filters, or by disabling decoder circuitry portions, as channel response characteristics allow.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: May 28, 2013
    Assignee: Broadcom Corporation
    Inventors: Oscar E. Agazzi, John L. Creigh, Mehdi Hatamian, David E. Kruse, Arthur Abnous, Henry Samueli
  • Patent number: 8320443
    Abstract: A method and a system for providing ISI compensation to an input signal in a bifurcated manner. ISI compensation is provided in two stages, a first stage compensates ISI components induced by characteristics of a transmitter's partial response pulse shaping filter, a second stage compensates ISI components induced by characteristics of a multi-pair transmission channel. First stage ISI compensation is performed in an inverse response filter having a characteristic feedback gain factor K, during system start-up. Second stage ISI compensation is performed by a single DFE in combination with a MDFE operating on tentative decisions output from a Viterbi decoder. As the DFE of the second stage reaches convergence, the feedback gain factor K of the first stage is ramped to zero.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: November 27, 2012
    Assignee: Broadcom Corporation
    Inventors: Oscar E. Agazzi, David Kruse, Arthur Abnous, Mehdi Hatamian
  • Patent number: 8306104
    Abstract: Various systems and methods providing high speed decoding, enhanced power reduction and clock domain partitioning for a multi-pair gigabit Ethernet transceiver are disclosed. ISI compensation is partitioned into two stages; a first stage compensates ISI components induced by characteristics of a transmitter's partial response pulse shaping filter in a demodulator, a second stage compensates ISI components induced by characteristics of a multi-pair transmission channel in a Viterbi decoder. High speed decoding is accomplished by reducing the DFE depth by providing an input signal from a multiple decision feedback equalizer to the Viterbi based on a tail value and a subset of coefficient values received from a unit depth decision-feedback equalizer. Power reduction is accomplished by adaptively truncating active taps in the NEXT, FEXT and echo cancellation filters, or by disabling decoder circuitry portions, as channel response characteristics allow.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: November 6, 2012
    Assignee: Broadcom Corporation
    Inventors: Oscar E. Agazzi, John L. Creigh, Mehdi Hatamian, David E. Kruse, Arthur Abnous, Henry Samueli
  • Patent number: 8259787
    Abstract: A method and a system for providing an input signal from a multiple decision feedback equalizer to a decoder based on a tail value and a subset of coefficient values received from a decision-feedback equalizer. A set of pre-computed values based on the subset of coefficient values is generated. Each of the pre-computed values is combined with the tail value to generate a tentative sample. One of the tentative samples is selected as the input signal to the decoder. In one aspect of the system, tentative samples are saturated and then stored in a set of registers before being outputted to a multiplexer which selects one of the tentative samples as the input signal to the decoder.
    Type: Grant
    Filed: December 8, 2009
    Date of Patent: September 4, 2012
    Assignee: Broadcom Corporation
    Inventors: Oscar E. Agazzi, David Kruse, Arthur Abnous, Mehdi Hatamian
  • Patent number: 8201045
    Abstract: A method and a system for decoding information signals encoded in accordance with a multi-state encoding scheme and transmitted over a multi-dimensional transmission channel by computing a distance of a received word from a codeword. One-dimensional (1D) input signals are processed in a pair of symbol decoders, implemented as look-up tables, to produce a pair of 1D errors, with each representing a distance metric between the input signal and a symbol in one of two disjoint symbol-subsets. The 1D errors are combined based on the multi-state encoding scheme in order to produce a set of multi-dimensional error terms. Each of the multi-dimensional error terms corresponds to a distance between a received word and a nearest codeword.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: June 12, 2012
    Assignee: Broadcom Corporation
    Inventors: Oscar E. Agazzi, David Kruse, Arthur Abnous, Mehdi Hatamian
  • Publication number: 20120106601
    Abstract: A system and method for packet communication is disclosed. Echo in a received symbol stream may be reduced to produce an echo-reduced symbol stream. The echo-reduced symbol stream may be buffered according to a propagation delay of the received symbol stream to produce a deskewed symbol stream. The deskewed symbol stream may be decoded to produce a decoded packet.
    Type: Application
    Filed: May 2, 2011
    Publication date: May 3, 2012
    Inventors: Oscar E. Agazzi, David Kruse, Arthur Abnous, Mehdi Hatamian
  • Patent number: 8073083
    Abstract: Sliding block traceback decoding of block codes. Block by block basis decoding is performed in which a single block, and its corresponding overlap portion, are processed during a given time. The traceback saves a record of decision (e.g., among possible trellis branches between various trellis stages) and constructs only the surviving paths through each individual block. Since only one block (by also employing its corresponding overlap portion) is decoded per time, the traceback through the coded block signal is short. One block of the coded block signal is decoded at a time, and certain resulting information (e.g., bit estimates and/or states) of a first decoded block can be leveraged when decoding a second/adjacent block.
    Type: Grant
    Filed: April 29, 2008
    Date of Patent: December 6, 2011
    Assignee: Broadcom Corporation
    Inventors: William Gene Bliss, Arthur Abnous
  • Patent number: 8031799
    Abstract: Various systems and methods providing high speed decoding, enhanced power reduction and clock domain partitioning for a multi-pair gigabit Ethernet transceiver are disclosed. ISI compensation is partitioned into two stages; a first stage compensates ISI components induced by characteristics of a transmitters partial response pulse shaping filter in a demodulator, a second stage compensates ISI components induced by characteristics of a multi-pair transmission channel in a Viterbi decoder. High speed decoding is accomplished by reducing the DFE depth by providing an input signal from a multiple decision feedback equalizer to the Viterbi based on a tail value and a subset of coefficient values received from a unit depth decision-feedback equalizer. Power reduction is accomplished by adaptively truncating active taps in the NEXT, FEXT and echo cancellation filters, or by disabling decoder circuitry portions, as channel response characteristics allow.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: October 4, 2011
    Assignee: Broadcom Corporation
    Inventors: Oscar E. Agazzi, John L. Creigh, Mehdi Hatamian, David E. Kruse, Arthur Abnous, Henry Samueli
  • Patent number: 7936840
    Abstract: A feedforward equalizer for equalizing a sequence of signal samples received by a receiver from a remote transmitter. The feedforward equalizer has a gain and is included in the receiver which includes a timing recovery module for setting a sampling phase and a decoder. The feedforward equalizer comprises a non-adaptive filter and a gain stage. The non-adaptive filter receives the signal samples and produces a filtered signal. The gain stage adjusts the gain of the feedforward equalizer by adjusting the amplitude of the filtered signal. The amplitude of the filtered signal is adjusted so that it fits in the operational range of the decoder. The feedforward equalizer does not affect the sampling phase setting of the timing recovery module of the receiver.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: May 3, 2011
    Inventors: Oscar E. Agazzi, David Kruse, Arthur Abnous, Mehdi Hatamian
  • Publication number: 20110096824
    Abstract: Various systems and methods providing high speed decoding, enhanced power reduction and clock domain partitioning for a multi-pair gigabit Ethernet transceiver are disclosed. ISI compensation is partitioned into two stages; a first stage compensates ISI components induced by characteristics of a transmitter's partial response pulse shaping filter in a demodulator, a second stage compensates ISI components induced by characteristics of a multi-pair transmission channel in a Viterbi decoder. High speed decoding is accomplished by reducing the DFE depth by providing an input signal from a multiple decision feedback equalizer to the Viterbi based on a tail value and a subset of coefficient values received from a unit depth decision-feedback equalizer. Power reduction is accomplished by adaptively truncating active taps in the NEXT, FEXT and echo cancellation filters, or by disabling decoder circuitry portions, as channel response characteristics allow.
    Type: Application
    Filed: September 7, 2010
    Publication date: April 28, 2011
    Inventors: Oscar E. Agazzi, John L. Creigh, Mehdi Hatamian, David E. Kruse, Arthur Abnous, Henry Samueli
  • Publication number: 20110064123
    Abstract: Various systems and methods providing high speed decoding, enhanced power reduction and clock domain partitioning for a multi-pair gigabit Ethernet transceiver are disclosed. ISI compensation is partitioned into two stages; a first stage compensates ISI components induced by characteristics of a transmitters partial response pulse shaping filter in a demodulator, a second stage compensates ISI components induced by characteristics of a multi-pair transmission channel in a Viterbi decoder. High speed decoding is accomplished by reducing the DFE depth by providing an input signal from a multiple decision feedback equalizer to the Viterbi based on a tail value and a subset of coefficient values received from a unit depth decision-feedback equalizer. Power reduction is accomplished by adaptively truncating active taps in the NEXT, FEXT and echo cancellation filters, or by disabling decoder circuitry portions, as channel response characteristics allow.
    Type: Application
    Filed: August 3, 2010
    Publication date: March 17, 2011
    Inventors: Oscar E. Agazzi, John L. Creigh, Mehdi Hatamian, David E. Kruse, Arthur Abnous, Henry Samueli
  • Publication number: 20100309963
    Abstract: Various systems and methods providing high speed decoding, enhanced power reduction and clock domain partitioning for a multi-pair gigabit Ethernet transceiver are disclosed. ISI compensation is partitioned into two stages; a first stage compensates ISI components induced by characteristics of a transmitter's partial response pulse shaping filter in a demodulator, a second stage compensates ISI components induced by characteristics of a multi-pair transmission channel in a Viterbi decoder. High speed decoding is accomplished by reducing the DFE depth by providing an input signal from a multiple decision feedback equalizer to the Viterbi based on a tail value and a subset of coefficient values received from a unit depth decision-feedback equalizer. Power reduction is accomplished by adaptively truncating active taps in the NEXT, FEXT and echo cancellation filters, or by disabling decoder circuitry portions, as channel response characteristics allow.
    Type: Application
    Filed: June 8, 2010
    Publication date: December 9, 2010
    Inventors: Oscar E. Agazzi, John L. Creigh, Mehdi Hatamian, David E. Kruse, Arthur Abnous, Henry Samueli
  • Publication number: 20100303144
    Abstract: A method for providing a next-cycle input sample from a decision feedback equalizer to a symbol decoder using look-ahead computations such that timing contention between the decision feedback equalizer and the symbol decoder is reduced. During a symbol period, a set of possible values is computed in the decision feedback equalizer and a set of path memory symbols is computed in the symbol decoder, the set of path memory symbols being based on a current input sample. During the same symbol period, one of the possible values is selected as the next-cycle input sample based on at least one of the next-cycle path memory symbols produced from the symbol decoder.
    Type: Application
    Filed: June 15, 2010
    Publication date: December 2, 2010
    Inventors: Arthur Abnous, Avanindra Madisetti, Christian A.J. Lutkemeyer
  • Patent number: 7801240
    Abstract: Various systems and methods providing high speed decoding, enhanced power reduction and clock domain partitioning for a multi-pair gigabit Ethernet transceiver are disclosed. ISI compensation is partitioned into two stages; a first stage compensates ISI components induced by characteristics of a transmitter's partial response pulse shaping filter in a demodulator, a second stage compensates ISI components induced by characteristics of a multi-pair transmission channel in a Viterbi decoder. High speed decoding is accomplished by reducing the DFE depth by providing an input signal from a multiple decision feedback equalizer to the Viterbi based on a tail value and a subset of coefficient values received from a unit depth decision-feedback equalizer. Power reduction is accomplished by adaptively truncating active taps in the NEXT, FEXT and echo cancellation filters, or by disabling decoder circuitry portions, as channel response characteristics allow.
    Type: Grant
    Filed: November 18, 2008
    Date of Patent: September 21, 2010
    Inventors: Oscar E. Agazzi, John L. Creigh, Mehdi Hatamian, David E. Kruse, Arthur Abnous, Henry Samueli
  • Patent number: 7801241
    Abstract: Various systems and methods providing high speed decoding, enhanced power reduction and clock domain partitioning for a multi-pair gigabit Ethernet transceiver are disclosed. ISI compensation is partitioned into two stages; a first stage compensates ISI components induced by characteristics of a transmitter's partial response pulse shaping filter in a demodulator, a second stage compensates ISI components induced by characteristics of a multi-pair transmission channel in a Viterbi decoder. High speed decoding is accomplished by reducing the DFE depth by providing an input signal from a multiple decision feedback equalizer to the Viterbi based on a tail value and a subset of coefficient values received from a unit depth decision-feedback equalizer. Power reduction is accomplished by adaptively truncating active taps in the NEXT, FEXT and echo cancellation filters, or by disabling decoder circuitry portions, as channel response characteristics allow.
    Type: Grant
    Filed: August 3, 2009
    Date of Patent: September 21, 2010
    Inventors: Oscar E. Agazzi, John L. Creigh, Mehdi Hatamian, David E. Kruse, Arthur Abnous, Henry Samueli
  • Patent number: 7792186
    Abstract: Various systems and methods providing high speed decoding, enhanced power reduction and clock domain partitioning for a multi-pair gigabit Ethernet transceiver are disclosed. ISI compensation is partitioned into two stages; a first stage compensates ISI components induced by characteristics of a transmitter's partial response pulse shaping filter in a demodulator, a second stage compensates ISI components induced by characteristics of a multi-pair transmission channel in a Viterbi decoder. High speed decoding is accomplished by reducing the DFE depth by providing an input signal from a multiple decision feedback equalizer to the Viterbi based on a tail value and a subset of coefficient values received from a unit depth decision-feedback equalizer. Power reduction is accomplished by adaptively truncating active taps in the NEXT, FEXT and echo cancellation filters, or by disabling decoder circuitry portions, as channel response characteristics allow.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: September 7, 2010
    Inventors: Oscar E. Agazzi, John L. Creigh, Mehdi Hatamian, David E. Kruse, Arthur Abnous, Henry Samueli
  • Publication number: 20100208788
    Abstract: A method and a system for providing ISI compensation to an input signal in a bifurcated manner. ISI compensation is provided in two stages, a first stage compensates ISI components induced by characteristics of a transmitter's partial response pulse shaping filter, a second stage compensates ISI components induced by characteristics of a multi-pair transmission channel. First stage ISI compensation is performed in an inverse response filter having a characteristic feedback gain factor K, during system start-up. Second stage ISI compensation is performed by a single DFE in combination with a MDFE operating on tentative decisions output from a Viterbi decoder. As the DFE of the second stage reaches convergence, the feedback gain factor K of the first stage is ramped to zero.
    Type: Application
    Filed: April 28, 2010
    Publication date: August 19, 2010
    Inventors: Oscar E. Azazzi, David Kruse, Arthur Abnous, Mehdi Hatamian