Patents by Inventor Arthur Ashman

Arthur Ashman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020160335
    Abstract: A submergible or non-submergible (“one stage”) screw-type implant for use in the immediate post-extraction site of a patient's tooth. In order to increase the ability of regenerated bone to anchor the implant, an upper portion of the implant has a preferably generally conical shape and has a plurality of spherical projections sintered to its outer surface to make it suitable for bone integration and retention. The lower portion of the implant has a cylindrical shape with threads extending over a portion thereof. A channel is located through the threads and is shaped so that one side forms a cutting edge that makes the lower portion of the implant self-tapping into the bone at the base of the tooth extension socket.
    Type: Application
    Filed: June 25, 2002
    Publication date: October 31, 2002
    Applicant: Arthur Ashman
    Inventors: Arthur Ashman, Leonard I. Linkow
  • Publication number: 20020119417
    Abstract: An improved assembly of a syringe and a nozzle tip and method of use. The syringe includes nozzle tip having a sleeve portion that fits on the free end of the syringe barrel and a curved nozzle end. The nozzle tip may include a filter screen of preselected mesh size. In use, a preselected amount of marrow blood may be aspirated through the curved aspirating nozzle end and filter screen into the syringe barrel where it mixes with bone regeneration material therein to form a viscous fluid mixture. The nozzle tip is removed from the syringe and the mixture is expelled from the syringe and applied to a surgical site by depressing the syringe plunger.
    Type: Application
    Filed: April 24, 2002
    Publication date: August 29, 2002
    Inventor: Arthur Ashman
  • Publication number: 20020110785
    Abstract: A method and apparatus for augmenting an endentulous alveolar ridge of a patient comprises the steps of (1) making a provisional denture-stent with a hollow space on the underside to account for the width, height and extent of the desired augmentation; (2) making an incision in, and reflecting, the gingiva where the augmentation is desired; (3) inserting bone graft material on the cortical plate; (4) suturing the gingiva; and (5) inserting the provisional stent over the bone graft material.
    Type: Application
    Filed: April 18, 2002
    Publication date: August 15, 2002
    Inventor: Arthur Ashman
  • Patent number: 6413089
    Abstract: A submergible or non-submergible (“one stage”) screw-type implant for use in the immediate post-extraction site of a patient's tooth. In order to increase the ability of regenerated bone to anchor the implant, an upper portion of the implant has a preferably generally conical shape and has a plurality of spherical projections sintered to its outer surface to make it suitable for bone integration and retention. The lower portion of the implant has a cylindrical shape with threads extending over a portion thereof. A channel is located through the threads and is shaped so that one side forms a cutting edge that makes the lower portion of the implant self-tapping into the bone at the base of the tooth extension socket.
    Type: Grant
    Filed: February 10, 1999
    Date of Patent: July 2, 2002
    Inventors: Arthur Ashman, Leonard I. Linkow
  • Patent number: 6402518
    Abstract: A method and apparatus for augmenting an endentulous alveolar ridge of a patient comprises the steps of (1) making a provisional denture-stent with a hollow space on the underside to account for the width, height and extent of the desired augmentation; (2) making an incision in, and reflecting, the gingiva where the augmentation is desired; (3) inserting bone graft material on the cortical plate; (4) suturing the gingiva; and (5) inserting the provisional stent over the bone graft material.
    Type: Grant
    Filed: November 30, 1999
    Date of Patent: June 11, 2002
    Inventor: Arthur Ashman
  • Publication number: 20020055699
    Abstract: Biocompatible adhesive protective dressings, and methods of manufacturing and using the same, having properties suitable for use on moist tissues such as gingiva. The dressing may include a flexible sheet, e.g. a metal foil, with an irradiated gamma radiation sensitive adhesive on one surface. The properties of gamma sensitive adhesives are modified by exposure to gamma radiation so as to increase their adhesiveness and volume. The dressing may be applied to human or animal tissue to protect the tissue from the environment, and retain autogenous and other substances at the application site. The dressing may be used at surgical sites or wounds.
    Type: Application
    Filed: October 29, 2001
    Publication date: May 9, 2002
    Inventor: Arthur Ashman
  • Publication number: 20020055700
    Abstract: Biocompatible adhesive protective dressings, and methods of manufacturing and using the same, having properties suitable for use on moist tissues such as gingiva. The dressing may include a flexible sheet, e.g. a metal foil, with an irradiated gamma radiation sensitive adhesive on one surface. The properties of gamma sensitive adhesives are modified by exposure to gamma radiation so as to increase their adhesiveness and volume. The dressing may be applied to human or animal tissue to protect the tissue from the environment, and retain autogenous and other substances at the application site. The dressing may be used at surgical sites or wounds.
    Type: Application
    Filed: October 29, 2001
    Publication date: May 9, 2002
    Inventor: Arthur Ashman
  • Publication number: 20020055698
    Abstract: Biocompatible adhesive protective dressings, and methods of manufacturing and using the same, having properties suitable for use on moist tissues such as gingiva. The dressing may include a flexible sheet, e.g. a metal foil, with an irradiated gamma radiation sensitive adhesive on one surface. The properties of gamma sensitive adhesives are modified by exposure to gamma radiation so as to increase their adhesiveness and volume. The dressing may be applied to human or animal tissue to protect the tissue from the environment, and retain autogenous and other substances at the application site. The dressing may be used at surgical sites or wounds.
    Type: Application
    Filed: October 29, 2001
    Publication date: May 9, 2002
    Inventor: Arthur Ashman
  • Publication number: 20020009692
    Abstract: A method for preserving the alveolar ridge surrounding a presently extracted root socket by backfilling the socket with bone graft material and installing an implant in the root socket area either immediately before backfilling or after backfilling and a delay in which new bone is allowed to grow into the bone graft material. In one embodiment, the dental implant is installed apically into the root socket immediately following root extraction. The open area of the root socket surrounding the implant is then backfilled with bone graft material immediately after implant placement. The implant is preferably a threaded implant (but it can be a cylinder-type) which is placed approximately three to six millimeters apically to said root socket.
    Type: Application
    Filed: October 2, 2001
    Publication date: January 24, 2002
    Inventor: Arthur Ashman
  • Patent number: 6325627
    Abstract: A method for preserving the alveolar ridge surrounding a presently extracted root socket by backfilling the socket with bone graft material and installing an implant in the root socket area either immediately before backfilling or after backfilling and a delay in which new bone is allowed to grow into the bone graft material. In one embodiment, the dental implant is installed apically into the root socket immediately following root extraction. The open area of the root socket surrounding the implant is then backfilled with bone graft material immediately after implant placement. The implant is preferably a threaded implant (but it can be a cylinder-type) which is placed approximately three to six millimeters apically to said root socket.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: December 4, 2001
    Inventor: Arthur Ashman
  • Patent number: 6312258
    Abstract: The present invention provides a kit system comprising a plurality of disposable kits, each kit being adapted for post-extraction dental implantation on a particular dental area. Each kit includes a dental implant of specified dimensions for a particular dental area of the mouth, a transfer coping attachable to the dental implant for creating an impression for making a model to produce a prosthetic tooth, bone graft material for filling the void area around a portion of the implant after implantation, burrs and bone expanders, and a portable housing for storing the dental implant, the transfer coping, the bone graft material, wound dressing and burrs and bone expanders. Each disposable kit includes indicia which uniquely identifies it with the particular dental area of use. The kit system may include a non-disposable instrument kit including a plurality of reusable and sterilizable tools such as insertion instruments, a scissor, and a suture holder, etc.
    Type: Grant
    Filed: August 19, 1999
    Date of Patent: November 6, 2001
    Inventor: Arthur Ashman
  • Patent number: 6299763
    Abstract: A bone filter trap for harvesting autogenous bone and cell marrow and blood elements collected by an aspirator during medical and dental bone surgical procedures. The bone trap is disposed between the aspirator suction system and the aspirator tip. The bone filter or trap includes housing through which an air flow induced by the suction system is allowed to pass via inlet and outlet openings in the housing. A cylindrically-shaped mesh is longitudinally disposed therein. The cylindrically shaped mesh is open at its top end (facing the inlet opening) and is fitted with a removable solid base at the distal outlet end, such that the induced air flow carrying liquids, solids and gases from the patient surgical site is forced to pass through the mesh. The mesh is sized such that only autogenous bone and cell marrow and blood elements are trapped in the mesh. Upon completion of the medical procedure, the cylindrically-shaped mesh is removed from the inlet and outlet housings.
    Type: Grant
    Filed: April 9, 1999
    Date of Patent: October 9, 2001
    Inventor: Arthur Ashman
  • Patent number: 4728570
    Abstract: An implant material for hard tissue comprising a porous matrix of a mass of biologically-compatible polymeric particles, the particles bonded together to form a unitary prosthetic implant, the prosthetic implant having interstices between the bonded particles forming pores into which bone tissue can grow and having a quantity of calcium hydroxide distributed in the pores of the matrix. Also disclosed is a packing material for forming in vivo prosthetic implants for hard tissue, the packing material comprising a mass of disjoint polymeric particles having an inner core and an outer coating and a quantity of calcium hydroxide distributed in the mass of polymeric particles effective to induce hard tissue growth.
    Type: Grant
    Filed: October 29, 1985
    Date of Patent: March 1, 1988
    Assignee: United States Surgical Corporation
    Inventors: Arthur Ashman, Itzhak Binderman
  • Patent number: 4547390
    Abstract: This invention relates to implantable porous prostheses for use as bone or hard tissue replacements anywhere in the body. The porous implants comprise loose, individual polymeric particles of a specified size, coated with a hydrophilic material and barium sulfate particles. The prostheses are biologically compatible in the body and promote bone and tissue ingrowth and attachment. This invention also relates to a method for producing the novel prosthetic devices disclosed herein.
    Type: Grant
    Filed: September 30, 1982
    Date of Patent: October 15, 1985
    Assignee: Medical Biological Sciences, Inc.
    Inventors: Arthur Ashman, Paul F. Bruins
  • Patent number: 4547327
    Abstract: A porous implantable oral prosthesis which can be used to replicate and replace any hard tissue portion of the mouth such as bone and teeth is described. The prosthesis comprises sintered polymeric particles coated with a hydrophilic material. The polymeric particles vary in size so as to provide an area of relatively coarse porosity where the prosthesis is intended to interface with bone tissue and relatively fine porosity where it is intended to interface with soft tissue. A process for producing such prosthesis by filling a mold with appropriate molding compounds comprised of polymeric particles and a hydrophilic monomer, sintering the particles and polymerizing the monomer by dielectric heating, removing the sintered material from the cooled mold, and placing the prosthesis in a hot liquid to remove residues is described. An entire tooth, including a nonporous crown may be produced.
    Type: Grant
    Filed: August 8, 1984
    Date of Patent: October 15, 1985
    Assignee: Medical Biological Sciences, Inc.
    Inventors: Paul F. Bruins, Arthur Ashman
  • Patent number: 4536158
    Abstract: A porous implantable oral prosthesis which can be used to replicate and replace any hard tissue portion of the mouth such as bone and teeth is described. The prosthesis comprises sintered polymeric particles coated with a hydrophilic material. The polymeric particles vary in size so as to provide an area of relatively coarse porosity where the prosthesis is intended to interface with bone tissue and relatively fine porosity where it is intended to interface with soft tissue. A process for producing such prosthesis by filling a mold with appropriate molding compounds comprised of polymeric particles and a hydrophilic monomer, sintering the particles and polymerizing the monomer by dielectric heating, removing the sintered material from the cooled mold, and placing the prosthesis in a hot liquid to remove residues is described. An entire tooth, including a nonporous crown may be produced.
    Type: Grant
    Filed: September 30, 1982
    Date of Patent: August 20, 1985
    Assignee: Medical Biological Sciences, Inc.
    Inventors: Paul F. Bruins, Arthur Ashman
  • Patent number: 4535485
    Abstract: This invention relates to implantable porous prostheses for use as bone or hard tissue replacements anywhere in the body. The porous implants comprise loose, individual polymeric particles of a specified size, coated with a hydrophilic material and barium sulfate particles. The prostheses are biologically compatible in the body and promote bone and tissue ingrowth and attachment. This invention also relates to a method for producing the novel prosthetic devices disclosed herein.
    Type: Grant
    Filed: March 12, 1982
    Date of Patent: August 20, 1985
    Assignee: Medical Biological Sciences, Inc.
    Inventors: Arthur Ashman, Paul F. Bruins
  • Patent number: 4244689
    Abstract: Nontoxic polymeric plastic medical implants for endosteal and periosteal applications such as filling bone defects, replacing entire bony parts, and tooth replacement either immediately after extraction or subsequent to healing, and a method of fabricating such implants to produce a porous surface having a predetermined pore size, pore depth, and degree of porosity. The method of fabrication of the porous portion of the implant involves adding sodium chloride crystals or other nontoxic leachable substance of controlled particle size corresponding to the desired pore size to a powdered polymer-liquid monomer mixture in relative amounts corresponding to the desired degree of porosity. After heat polymerization without an initiator, followed by abrasive removal of the resulting surface skin, the salt is leached from the plastic to provide said porosity.
    Type: Grant
    Filed: June 27, 1978
    Date of Patent: January 13, 1981
    Inventor: Arthur Ashman
  • Patent number: 4199864
    Abstract: Nontoxic polymeric plastic medical implants for endosteal and periosteal applications such as filling bone defects, replacing entire bony parts, and tooth replacement either immediately after extraction or subsequent to healing, and a method of fabricating such implants to produce a porous surface having a predetermined pore size, pore depth, and degree of porosity. The method of fabrication of the porous portion of the implant involves adding sodium chloride crystals or other nontoxic leachable substance of controlled particle size corresponding to the desired pore size to a powdered polymer-liquid monomer mixture in relative amounts corresponding to the desired degree of porosity. After heat polymerization without an initiator, followed by abrasive removal of the resulting surface skin, the salt is leached from the plastic to provide said porosity.
    Type: Grant
    Filed: November 22, 1977
    Date of Patent: April 29, 1980
    Inventor: Arthur Ashman