Patents by Inventor Arthur Deptala

Arthur Deptala has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240149040
    Abstract: A sterile interface system for placement between a syringe and an IV port to provide a closed system for drawing up and injecting liquid drugs, comprises an IV cannula interface for connection to an IV delivery tube, a syringe interface for a connection to a drug delivery syringe and a shrouded interface positioned between the IV cannula interface and the syringe interface. The sterile interface system includes several puncturable silicone structures which are pierced by a cannula mounted longitudinally within the IV cannula interface to provide a sterile flow path.
    Type: Application
    Filed: November 4, 2022
    Publication date: May 9, 2024
    Inventors: Arthur Deptala, Jonas Cochran
  • Publication number: 20240122510
    Abstract: Blood sample optimization systems and methods are described that reduce or eliminate contaminates in collected blood samples, which in turn reduces or eliminates false positive readings in blood cultures or other testing of collected blood samples. A blood sample optimization system can include a blood sequestration device located between a patient needle and a sample needle. The blood sequestration device can include a sequestration chamber for sequestering an initial, potentially contaminated aliquot of blood, and may further include a sampling channel that bypasses the sequestration chamber to convey likely uncontaminated blood between the patient needle and the sample needle after the initial aliquot of blood is sequestered in the sequestration chamber.
    Type: Application
    Filed: May 15, 2023
    Publication date: April 18, 2024
    Applicant: KURIN, INC.
    Inventors: Bobby E. ROGERS, Gino KANG, David Karl STROUP, Jonas Dean COCHRAN, Arthur DEPTALA, John DETLOFF, Lonnie POGUE, Brian MACOWSKI
  • Patent number: 11950892
    Abstract: A handheld device measures all vital signs and some hemodynamic parameters from the human body and transmits measured information wirelessly to a web-based system, where the information can be analyzed by a clinician to help diagnose a patient. The system utilizes our discovery that bio-impedance signals used to determine vital signs and hemodynamic parameters can be measured over a conduction pathway extending from the patient's wrist to a location on their thoracic cavity, e.g. their chest or navel. The device's form factor can include re-usable electrode materials to reduce costs. Measurements made by the handheld device, which use the belly button as a ‘fiducial’ marker, facilitate consistent, daily measurements, thereby reducing positioning errors that reduce accuracy of standard impedance measurements. In this and other ways, the handheld device provides an effective tool for characterizing patients with chronic diseases, such as heart failure, renal disease, and hypertension.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: April 9, 2024
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Matthew Banet, Marshal Singh Dhillon, Susan Meeks Pede, Lauren Nicole Miller Hayward, Arthur Deptala, Jonas Dean Cochran
  • Patent number: 11744494
    Abstract: Blood sample optimization systems and methods are described that reduce or eliminate contaminates in collected blood samples, which in turn reduces or eliminates false positive readings in blood cultures or other testing of collected blood samples. A blood sample optimization system can include a blood sequestration device located between a patient needle and a sample needle. The blood sequestration device can include a sequestration chamber for sequestering an initial, potentially contaminated aliquot of blood, and may further include a sampling channel that bypasses the sequestration chamber to convey likely uncontaminated blood between the patient needle and the sample needle after the initial aliquot of blood is sequestered in the sequestration chamber.
    Type: Grant
    Filed: November 10, 2020
    Date of Patent: September 5, 2023
    Assignee: KURIN, INC.
    Inventors: Bobby E. Rogers, Gino Kang, David Karl Stroup, Jonas Dean Cochran, Arthur Deptala, John Detloff, Lonnie Pogue, Brian Macowski
  • Patent number: 11717599
    Abstract: A breast pump system is provided with a suction tubing and a milk tubing, wherein the suction tubing and milk tubing each have first and second ends, and comprise a unitary tube structure. The system includes a first connector that has a first portion for coupling to a breast pump and the suction tubing, and a second portion for coupling to a milk bottle and the milk tubing. The system also includes a second connector that has a first portion coupled to a suction port of a breast shield and the suction tubing, and a second portion coupled to a breast milk collecting port and the milk tubing. A breast shield system with a flexible diaphragm and a cover is provided that may be coupled to the breast pump system. A dual suction path filter cartridge is also provided.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: August 8, 2023
    Assignee: Babyation Inc.
    Inventors: Jared Miller, Samantha Rudolph, Arthur Deptala, Corey Feit
  • Publication number: 20230116910
    Abstract: Blood sample optimization systems and methods are described that reduce or eliminate contaminates in collected blood samples, which in turn reduces or eliminates false positive readings in blood cultures or other testing of collected blood samples. A blood sample optimization system can include a blood sequestration device located between a patient needle and a sample needle. The blood sequestration device can include a sequestration chamber for sequestering an initial, potentially contaminated aliquot of blood, and may further include a sampling channel that bypasses the sequestration chamber to convey likely uncontaminated blood between the patient needle and the sample needle after the initial aliquot of blood is sequestered in the sequestration chamber.
    Type: Application
    Filed: April 26, 2022
    Publication date: April 13, 2023
    Inventors: Bobby E. ROGERS, Gino KANG, David Karl STROUP, Jonas Dean COCHRAN, Arthur DEPTALA, John DETLOFF, Lonnie POGUE, Brian MACOWSKI
  • Patent number: 11617525
    Abstract: A blood sequestration device includes an inlet path, an outlet path, a sequestration chamber, and a sampling channel. The sequestration chamber is connected with the inlet path by a junction and is configured to receive a first portion of blood through the inlet path. The sequestration chamber has a vent that allows air to be displaced by the first portion of blood, the junction being configured to inhibit a return to the inlet path of any of the first portion of blood received by the sequestration chamber. The sampling channel is connected between the inlet path and the outlet path, and configured to convey subsequent amounts of blood between the inlet path and the outlet path after the first amount of blood is received by the sequestration chamber.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: April 4, 2023
    Assignee: KURIN, INC.
    Inventors: Bobby E. Rogers, Gino Kang, David Karl Stroup, Jonas Dean Cochran, Arthur Deptala, John Detloff, Lonnie Pogue, Brian Macowski, Kevin Nason
  • Publication number: 20220395205
    Abstract: Blood sample optimization systems and methods are described that reduce or eliminate contaminates in collected blood samples, which in turn reduces or eliminates false positive readings in blood cultures or other testing of collected blood samples. A blood sample optimization system can include a blood sequestration device located between a patient needle and a sample needle. The blood sequestration device can include a sequestration chamber for sequestering an initial, potentially contaminated aliquot of blood, and may further include a sampling channel that bypasses the sequestration chamber to convey likely uncontaminated blood between the patient needle and the sample needle after the initial aliquot of blood is sequestered in the sequestration chamber.
    Type: Application
    Filed: August 22, 2022
    Publication date: December 15, 2022
    Inventors: Bobby E. ROGERS, Gino KANG, David Karl STROUP, Jonas Dean COCHRAN, Arthur DEPTALA, John DETLOFF, Lonnie POGUE, Brian MACOWSKI
  • Patent number: 11311219
    Abstract: Blood sample optimization systems and methods are described that reduce or eliminate contaminates in collected blood samples, which in turn reduces or eliminates false positive readings in blood cultures or other testing of collected blood samples. A blood sample optimization system can include a blood sequestration device located between a patient needle and a sample needle. The blood sequestration device can include a sequestration chamber for sequestering an initial, potentially contaminated aliquot of blood, and may further include a sampling channel that bypasses the sequestration chamber to convey likely uncontaminated blood between the patient needle and the sample needle after the initial aliquot of blood is sequestered in the sequestration chamber.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: April 26, 2022
    Assignee: Kurin, Inc.
    Inventors: Bobby E. Rogers, Gino Kang, David Karl Stroup, Jonas Dean Cochran, Arthur Deptala, John Detloff, Lonnie Pogue, Brian Macowski
  • Patent number: 11123015
    Abstract: A stand-on physiological sensor (e.g. floormat) measures vital signs and various hemodynamic parameters, including blood pressure and ECG waveforms. The sensor is similar in configuration to a common bathroom scale and includes electrodes that take electrical measurements from a patient's feet to generate bioimpedance waveforms, which are analyzed digitally to extract various other parameters, as well as a cuff-type blood pressure system that takes physical blood pressure measurements at one of the patient's feet. Blood pressure can also be calculated/derived from the bioimpedance waveforms. Measured parameters are transmitted wirelessly to facilitate remote monitoring of the patient for heart failure, chronic heart failure, end-stage renal disease, cardiac arrhythmias, and other degenerative diseases.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: September 21, 2021
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Matthew Banet, Marshal Singh Dhillon, Susan Meeks Pede, Lauren Nicole Miller Hayward, Arthur Deptala, Jonas Dean Cochran
  • Publication number: 20210237912
    Abstract: A vacuum controlled liquid delivery system, including a primary chamber; a manifold assembly affixed to the primary chamber, the manifold assembly comprising a feed line and an external pressure line; and a cap configured to reversibly engage the manifold assembly at one end and reversibly cap a syringe at another end, the cap comprising a septum and a porous plug, wherein when the cap is attached to the manifold assembly the feed line passes through the septum, and further wherein the porous plug seals upon contact with a liquid.
    Type: Application
    Filed: June 3, 2019
    Publication date: August 5, 2021
    Inventors: David Stroup, Jonas Cochran, Tanner Saccento, Arthur Deptala
  • Patent number: 11071479
    Abstract: A handheld device measures all vital signs and some hemodynamic parameters from the human body and transmits measured information wirelessly to a web-based system, where the information can be analyzed by a clinician to help diagnose a patient. The system utilizes our discovery that bio-impedance signals used to determine vital signs and hemodynamic parameters can be measured over a conduction pathway extending from the patient's wrist to a location on their thoracic cavity, e.g. their chest or navel. The device's form factor can include re-usable electrode materials to reduce costs. Measurements made by the handheld device, which use the belly button as a ‘fiducial’ marker, facilitate consistent, daily measurements, thereby reducing positioning errors that reduce accuracy of standard impedance measurements. In this and other ways, the handheld device provides an effective tool for characterizing patients with chronic diseases, such as heart failure, renal disease, and hypertension.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: July 27, 2021
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Matthew Banet, Marshal Singh Dhillon, Susan Meeks Pede, Lauren Nicole Miller Hayward, Arthur Deptala, Jonas Dean Cochran
  • Publication number: 20210145336
    Abstract: Blood sample optimization systems and methods are described that reduce or eliminate contaminates in collected blood samples, which in turn reduces or eliminates false positive readings in blood cultures or other testing of collected blood samples. A blood sample optimization system can include a blood sequestration device located between a patient needle and a sample needle. The blood sequestration device can include a sequestration chamber for sequestering an initial, potentially contaminated aliquot of blood, and may further include a sampling channel that bypasses the sequestration chamber to convey likely uncontaminated blood between the patient needle and the sample needle after the initial aliquot of blood is sequestered in the sequestration chamber.
    Type: Application
    Filed: November 10, 2020
    Publication date: May 20, 2021
    Inventors: Bobby E. ROGERS, Gino KANG, David Karl STROUP, Jonas Dean COCHRAN, Arthur DEPTALA, John DETLOFF, Lonnie POGUE, Brian MACOWSKI
  • Publication number: 20200352455
    Abstract: A handheld device measures all vital signs and some hemodynamic parameters from the human body and transmits measured information wirelessly to a web-based system, where the information can be analyzed by a clinician to help diagnose a patient. The system utilizes our discovery that bio-impedance signals used to determine vital signs and hemodynamic parameters can be measured over a conduction pathway extending from the patient's wrist to a location on their thoracic cavity, e.g. their chest or navel. The device's form factor can include re-usable electrode materials to reduce costs. Measurements made by the handheld device, which use the belly button as a ‘fiducial’ marker, facilitate consistent, daily measurements, thereby reducing positioning errors that reduce accuracy of standard impedance measurements. In this and other ways, the handheld device provides an effective tool for characterizing patients with chronic diseases, such as heart failure, renal disease, and hypertension.
    Type: Application
    Filed: July 28, 2020
    Publication date: November 12, 2020
    Inventors: Matthew Banet, Marshal Singh Dhillon, Susan Meeks Pede, Lauren Nicole Miller Hayward, Arthur Deptala, Jonas Dean Cochran
  • Patent number: 10827964
    Abstract: Blood sample optimization systems and methods are described that reduce or eliminate contaminates in collected blood samples, which in turn reduces or eliminates false positive readings in blood cultures or other testing of collected blood samples. A blood sample optimization system can include a blood sequestration device located between a patient needle and a sample needle. The blood sequestration device can include a sequestration chamber for sequestering an initial, potentially contaminated aliquot of blood, and may further include a sampling channel that bypasses the sequestration chamber to convey likely uncontaminated blood between the patient needle and the sample needle after the initial aliquot of blood is sequestered in the sequestration chamber.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: November 10, 2020
    Assignee: Kurin, Inc.
    Inventors: Bobby E. Rogers, Gino Kang, David Karl Stroup, Jonas Dean Cochran, Arthur Deptala, John Detloff, Lonnie Pogue, Brian Macowski, Chad Garrett
  • Publication number: 20200281514
    Abstract: A blood sequestration device includes an inlet path, an outlet path, a sequestration chamber, and a sampling channel. The sequestration chamber is connected with the inlet path by a junction and is configured to receive a first portion of blood through the inlet path. The sequestration chamber has a vent that allows air to be displaced by the first portion of blood, the junction being configured to inhibit a return to the inlet path of any of the first portion of blood received by the sequestration chamber. The sampling channel is connected between the inlet path and the outlet path, and configured to convey subsequent amounts of blood between the inlet path and the outlet path after the first amount of blood is received by the sequestration chamber.
    Type: Application
    Filed: March 13, 2020
    Publication date: September 10, 2020
    Applicant: Kurin, Inc.
    Inventors: Bobby E. ROGERS, Gino KANG, David Karl STROUP, Jonas Dean COCHRAN, Arthur DEPTALA, John DETLOFF, Lonnie POGUE, Brian MACOWSKI, Kevin Nason
  • Patent number: 10736523
    Abstract: A handheld device measures all vital signs and some hemodynamic parameters from the human body and transmits measured information wirelessly to a web-based system, where the information can be analyzed by a clinician to help diagnose a patient. The system utilizes our discovery that bio-impedance signals used to determine vital signs and hemodynamic parameters can be measured over a conduction pathway extending from the patient's wrist to a location on their thoracic cavity, e.g. their chest or navel. The device's form factor can include re-usable electrode materials to reduce costs. Measurements made by the handheld device, which use the belly button as a ‘fiducial’ marker, facilitate consistent, daily measurements, thereby reducing positioning errors that reduce accuracy of standard impedance measurements. In this and other ways, the handheld device provides an effective tool for characterizing patients with chronic diseases, such as heart failure, renal disease, and hypertension.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: August 11, 2020
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Matthew Banet, Marshal Singh Dhillon, Susan Meeks Pede, Lauren Nicole Miller Hayward, Arthur Deptala, Jonas Dean Cochran
  • Publication number: 20200164140
    Abstract: A medical infusion device including a chamber characterized by an upper body joined to a lower body via a reversibly collapsible sidewall. The upper body has a first channel fluidly coupled to a needle and a second channel fluidly coupled to an interior of the chamber. The chamber transitions from a collapsed state to the expanded state to retract the needle by introducing fluid into the interior of the chamber through the second channel.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 28, 2020
    Inventors: David Stroup, Arthur Deptala, Jonas Cochran
  • Patent number: 10588528
    Abstract: A handheld device measures all vital signs and some hemodynamic parameters from the human body and transmits measured information wirelessly to a web-based system, where the information can be analyzed by a clinician to help diagnose a patient. The system utilizes our discovery that bio-impedance signals used to determine vital signs and hemodynamic parameters can be measured over a conduction pathway extending from the patient's wrist to a location on their thoracic cavity, e.g. their chest or navel. The device's form factor can include re-usable electrode materials to reduce costs. Measurements made by the handheld device, which use the belly button as a ‘fiducial’ marker, facilitate consistent, daily measurements, thereby reducing positioning errors that reduce accuracy of standard impedance measurements. In this and other ways, the handheld device provides an effective tool for characterizing patients with chronic diseases, such as heart failure, renal disease, and hypertension.
    Type: Grant
    Filed: February 18, 2019
    Date of Patent: March 17, 2020
    Assignee: TOSENSE, INC.
    Inventors: Matthew Banet, Marshal Singh Dhillon, Susan Meeks Pede, Lauren Nicole Miller Hayward, Arthur Deptala, Jonas Dean Cochran
  • Patent number: 10549028
    Abstract: A medical infusion device including a chamber characterized by an upper body joined to a lower body via a reversibly collapsible sidewall. The upper body has a first channel fluidly coupled to a needle and a second channel fluidly coupled to an interior of the chamber. The chamber transitions from a collapsed state to the expanded state to retract the needle by introducing fluid into the interior of the chamber through the second channel.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: February 4, 2020
    Assignee: Alliance Vascular Devices, LLC
    Inventors: David Stroup, Arthur Deptala, Jonas Cochran