Patents by Inventor Arthur H Hartog

Arthur H Hartog has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7251038
    Abstract: An apparatus for sensing data from a remote optical sensor 16 has its frequency stabilised by balancing the outputs of narrow band filter 28 30, spaced about a desired frequency 36 positioned at about the 3 db down points 40 of a broad band light source 10 using voltage control, current control or temperature control to vary the frequency of the wide band light source 10. Difference between the outputs through the two narrow band filters 28 30 can be used to drive an amplifier 48 to correct the frequency of the broad band light source. The outputs through the two narrow band filters 28 30 can be converted 52 to binary numbers and fed to a microprocessor 56 which is used, via analog conversion 60, to drive the amplifier 48. The broad band light source 10 can be pulse modulated 68 to provide temporally separate light pulses 92 94 through each of the narrow band filters 28 30, measured at separate times.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: July 31, 2007
    Assignee: Schlumberger Technology Corporation
    Inventors: James Mcinnes, Maxwell R. Hadley, Arthur H. Hartog, Yuehua Chen, Timothy Jeffreys
  • Patent number: 7240730
    Abstract: A system to determine the mixture of fluids in the deviated section of a wellbore comprising at least one distributed temperature sensor adapted to measure the temperature profile along at least two levels of a vertical axis of the deviated section. Each distributed temperature sensor can be a fiber optic line functionally connected to a light source that may utilize optical time domain reflectometry to measure the temperature profile along the length of the fiber line. The temperature profiles at different positions along the vertical axis of the deviated wellbore enables the determination of the cross-sectional distribution of fluids flowing along the deviated section. Together with the fluid velocity of each of the fluids flowing along the deviated section, the cross-sectional fluid distribution enables the calculation of the flow rates of each of the fluids. The system may also be used in conjunction with a pipeline, such as a subsea pipeline, to determine the flow rates of fluids flowing therethrough.
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: July 10, 2007
    Assignee: Schlumberger Technology Corp.
    Inventors: Glynn R Williams, Kevin J Forbes, Arthur H Hartog, Christian Koeniger, George A Brown
  • Patent number: 6997256
    Abstract: A system to determine the mixture of fluids in the deviated section of a wellbore comprising at least one distributed temperature sensor adapted to measure the temperature profile along at least two levels of a vertical axis of the deviated section. Each distributed temperature sensor can be a fiber optic line functionally connected to a light source that may utilize optical time domain reflectometry to measure the temperature profile along the length of the fiber line. The temperature profiles at different positions along the vertical axis of the deviated wellbore enables the determination of the cross-sectional distribution of fluids flowing along the deviated section. Together with the fluid velocity of each of the fluids flowing along the deviated section, the cross-sectional fluid distribution enables the calculation of the flow rates of each of the fluids. The system may also be used in conjunction with a pipeline, such as a subsea pipeline, to determine the flow rates of fluids flowing therethrough.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: February 14, 2006
    Assignee: Sensor Highway Limited
    Inventors: Glynn R Williams, Kevin J Forbes, Arthur H Hartog, Christian Koeniger, George A Brown
  • Publication number: 20040112596
    Abstract: A system to determine the mixture of fluids in the deviated section of a wellbore comprising at least one distributed temperature sensor adapted to measure the temperature profile along at least two levels of a vertical axis of the deviated section. Each distributed temperature sensor can be a fiber optic line functionally connected to a light source that may utilize optical time domain reflectometry to measure the temperature profile along the length of the fiber line. The temperature profiles at different positions along the vertical axis of the deviated wellbore enables the determination of the cross-sectional distribution of fluids flowing along the deviated section. Together with the fluid velocity of each of the fluids flowing along the deviated section, the cross-sectional fluid distribution enables the calculation of the flow rates of each of the fluids. The system may also be used in conjunction with a pipeline, such as a subsea pipeline, to determine the flow rates of fluids flowing therethrough.
    Type: Application
    Filed: December 17, 2002
    Publication date: June 17, 2004
    Inventors: Glynn R. Williams, Kevin J. Forbes, Arthur H. Hartog, Christian Koeniger, George A. Brown
  • Patent number: 5821861
    Abstract: Wall temperatures of a reactor vessel are monitored by arranging an optical fibre in thermal contact with the wall and employing an optical time domain reflectometry system to monitor the respective temperatures at different points along the fibre. Such a monitoring method can be cheaper and more reliable than comparable prior art methods. An alarm may be triggered automatically when hot spots are detected.
    Type: Grant
    Filed: November 25, 1996
    Date of Patent: October 13, 1998
    Assignees: York Sensors Limited, Mossgas (Pty) Limited
    Inventors: Arthur H. Hartog, Dillwyn P. David, Jakob J. Hamman, Marc J. Middendorp
  • Patent number: 5592282
    Abstract: Optical time domain reflectometry methods and apparatus are proposed in which the back-scattered optical radiation used to produce output signals is restricted to that resulting from Rayleigh scattering of light launched into a fiber 2 at a first wavelength and that in an anti-Stokes spectral band resulting from Raman or Brillouin scattering of optical radiation at the first wavelength. A first set of output signals produced in dependence upon the anti-Stokes back-scatter may be normalized to the geometric mean of a second set of output signals, produced in dependence upon the Rayleigh back-scatter at the first wavelength, and a third set of output signals, produced in dependence upon Rayleigh back-scatter resulting from light launched into the fiber at the anti-Stokes wavelength.
    Type: Grant
    Filed: July 21, 1994
    Date of Patent: January 7, 1997
    Assignee: York Limited
    Inventor: Arthur H. Hartog
  • Patent number: 5146521
    Abstract: An optical fibre communication network comprising one optical source (1) connected to one end of an optical fibre (3), and several optical receivers (9) for detecting light scattered to the side of the optical fibre (3), the network being characterized by the fact that each optical receiver (9) is sufficiently sensitive to require for reliable communication only light lost by the fundamental scattering of the fibre (3) during normal propagation of the light originating in said optical source (1) while travelling in the vicinity of the optical receiver (9).
    Type: Grant
    Filed: June 10, 1991
    Date of Patent: September 8, 1992
    Assignee: York Limited
    Inventor: Arthur H. Hartog
  • Patent number: 4823166
    Abstract: An optical time-domain reflectometry method of sensing respective values of a physical parameter, such as temperature, at different locations along an optical fibre, in which back-scattered optical radiation is used to produce output signals indicative of the values being sensed, is improved by employing optical filtering means to ensure that the back-scattered radiation used is restricted to a preselected single spectral line resulting from inelastic scattering in the fibre, for example one of the Anti-Stokes Raman lines, or to two mutually adjacent such lines.
    Type: Grant
    Filed: August 19, 1986
    Date of Patent: April 18, 1989
    Assignee: York Limited
    Inventors: Arthur H. Hartog, Martin P. Gold, Adrian P. Leach
  • Patent number: 4714829
    Abstract: A detector comprises an optical radiation source (10) and a length of optic fibre (18) sensitive to local variations in a physical variable. Changes in radiation back-scattered by the fibre are received by a detector (24) which gives an output dependent on local changes in the physical variable.
    Type: Grant
    Filed: March 17, 1986
    Date of Patent: December 22, 1987
    Assignee: National Research Development Corporation
    Inventors: Arthur H. Hartog, David N. Payne