Patents by Inventor Arthur H. Lockwood

Arthur H. Lockwood has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5264699
    Abstract: A hybrid infrared focal plane array detector employs a thinned detector layer and substrate directly bonded to a conventional semiconductor readout integrated circuit substrate. The infrared detector layer and transparent substrate is thinned to a thickness of approximately 25-400.mu. to allow the detector to act like a flexible membrane to elastically respond to thermal mismatch due to differing coefficients of thermal expansion between the detector and semiconductor readout circuit as the hybrid device is cooled from manufacturing at room temperature to cryogenic operation temperatures. By thinning the detector substrate to a desired thickness, essentially unlimited hybrid detector sizes may be obtained. Additionally, the detector layer and substrate may be divided into sub-arrays to provide further resistance to stress induced from thermal mismatch.
    Type: Grant
    Filed: February 20, 1991
    Date of Patent: November 23, 1993
    Assignee: Amber Engineering, Inc.
    Inventors: Jeffrey Barton, Arthur H. Lockwood
  • Patent number: 4898834
    Abstract: An improved system and method for annealing indium antimonide ion implanted junctions employing an open-tube benign annealing environment. A furnace having a hollow chamber therein is maintained continuously at a predetermined annealing temperature and wafers of indium antimonide to be annealed are inserted into the chamber through a resealable airlock at one end of the chamber. A source of molten indium saturated with antimony is provided within the chamber to maintain desired partial pressures of indium and antimony within the chamber. Hydrogen gas is continuously flushed through the chamber to purge contaminants and maintain the chamber at a desired slight overpressure over atmospheric. At the conclusion of annealing, the indium antimonide wafer is removed from the chamber into the airlock which is flushed with hydrogen gas. The wafer is allowed to cool to room temperature and removed from the airlock for subsequent processing steps.
    Type: Grant
    Filed: June 27, 1988
    Date of Patent: February 6, 1990
    Assignee: Amber Engineering, Inc.
    Inventors: Arthur H. Lockwood, Adela Gonzales
  • Patent number: 4401487
    Abstract: The specification discloses a process and apparatus for forming a layer of mercury cadmium telluride of predetermined composition on the surface of a selected substrate by first providing a crystal growth melt comprising mercury, cadmium, and tellurium in a vertically-oriented crystal growth chamber. The melt comprises 33.33 mole percent or more of mercury and is maintained at a predetermined temperature above the liquidus temperature thereof. A condensing means is provided atop the crystal growth chamber in order to condense vapors of mercury which escape from the melt and to return this condensed mercury to the melt, to thereby maintain the melt at a constant composition. The substrate is contacted with this crystal growth melt for a predetermined period of time while cooling the melt below its liquidus temperature at a predetermined rate sufficient to cause the crystal growth of the layer of mercury cadmium telluride on the substrate to a desired thickness.
    Type: Grant
    Filed: November 14, 1980
    Date of Patent: August 30, 1983
    Assignee: Hughes Aircraft Company
    Inventor: Arthur H. Lockwood