Patents by Inventor Arthur L. Kotz
Arthur L. Kotz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240201428Abstract: Optical films, such as reflective polarizer films, and optical systems including the optical films are described. An optical system includes one or more optical lenses having at least one curved major surface, a partial reflector, and a reflective polarizer. For a substantially normally incident light in a predetermined wavelength range extending at least from about 450 nm to about 600 nm: the partial reflector has an average optical reflectance of at least 30%, and the reflective polarizer has an average optical reflectance Rs for a first polarization state, an average optical transmittance Tp for an orthogonal second polarization state, and an average optical reflectance Rp for the second polarization state, where Tp?80%, Rp?1%, and 50%?Rs?95%.Type: ApplicationFiled: February 2, 2024Publication date: June 20, 2024Inventors: John D. Le, Zhisheng Yun, Timothy L. Wong, Timothy J. Nevitt, Adam D. Haag, Arthur L. Kotz
-
Patent number: 12007595Abstract: An optical assembly includes an integral lens assembly having one or more lenses bonded to each other with spaced apart major first and second lens surfaces. First and second optical films are bonded to respective major first and second lens surfaces. The first and second optical films includes a plurality of polymeric layers. Each of the polymeric layers have an average thickness of less than about 500 nm. For a substantially normally incident light and a visible wavelength range the plurality of polymeric layers in the first optical film has an average optical transmittance and an average optical reflectance of greater than about 70% for a first polarization state and an orthogonal second polarization state, respectively. The plurality of polymeric layers in the second optical film has an average optical transmittance of greater than about 70% for at least one of the first and second polarization states.Type: GrantFiled: November 16, 2021Date of Patent: June 11, 2024Inventors: John D. Le, Gregg A. Ambur, Zhisheng Yun, Robert M. Jennings, Arthur L. Kotz, Timothy L. Wong, David T. Yust, Timothy J. Nevitt, Kayla A. McGrath
-
Publication number: 20240165907Abstract: An optical film includes a plurality of polymeric layers shaped along orthogonal first and second directions. A first curve being an intersection of the optical film with a first plane orthogonal to the second direction and to a reference plane has a best-fit first circular arc subtending a first angle at a center of curvature of the first circular arc of greater than 180 degrees where the optical film has a maximum projected area in the reference plane. A second curve being an intersection of the optical film with a second plane orthogonal to the first direction and to the reference plane has a best-fit second circular arc subtending a second angle at a center of curvature of the second circular arc of at least 30 degrees. Reflectance and transmittance of the optical film are described.Type: ApplicationFiled: November 29, 2023Publication date: May 23, 2024Inventors: Robert M. Jennings, William T. Fay, Jo A. Etter, Arthur L. Kotz, David J.W. Aastuen
-
Patent number: 11927783Abstract: Optical films, such as reflective polarizer films, and optical systems including the optical films are described. An optical system includes one or more optical lenses having at least one curved major surface, a partial reflector, and a reflective polarizer. For a substantially normally incident light in a predetermined wavelength range extending at least from about 450 nm to about 600 nm: the partial reflector has an average optical reflectance of at least 30%, and the reflective polarizer has an average optical reflectance Rs for a first polarization state, an average optical transmittance Tp for an orthogonal second polarization state, and an average optical reflectance Rp for the second polarization state, where Tp?80%, Rp?1%, and 50%?Rs?95%.Type: GrantFiled: July 11, 2019Date of Patent: March 12, 2024Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: John D. Le, Zhisheng Yun, Timothy L. Wong, Timothy J. Nevitt, Adam D. Haag, Arthur L. Kotz
-
Patent number: 11865808Abstract: An optical film includes a plurality of polymeric layers shaped along orthogonal first and second directions. A first curve being an intersection of the optical film with a first plane orthogonal to the second direction and to a reference plane has a best-fit first circular arc subtending a first angle at a center of curvature of the first circular arc of greater than 180 degrees where the optical film has a maximum projected area in the reference plane. A second curve being an intersection of the optical film with a second plane orthogonal to the first direction and to the reference plane has a best-fit second circular arc subtending a second angle at a center of curvature of the second circular arc of at least 30 degrees. Reflectance and transmittance of the optical film are described.Type: GrantFiled: May 16, 2022Date of Patent: January 9, 2024Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Robert M. Jennings, William T. Fay, Jo A. Etter, Arthur L. Kotz, David J. W. Aastuen
-
Publication number: 20240004117Abstract: An optical assembly includes an integral lens assembly having one or more lenses bonded to each other with spaced apart major first and second lens surfaces. First and second optical films are bonded to respective major first and second lens surfaces. The first and second optical films includes a plurality of polymeric layers. Each of the polymeric layers have an average thickness of less than about 500 nm. For a substantially normally incident light and a visible wavelength range the plurality of polymeric layers in the first optical film has an average optical transmittance and an average optical reflectance of greater than about 70% for a first polarization state and an orthogonal second polarization state, respectively. The plurality of polymeric layers in the second optical film has an average optical transmittance of greater than about 70% for at least one of the first and second polarization states.Type: ApplicationFiled: November 16, 2021Publication date: January 4, 2024Inventors: John D. Le, Gregg A. Ambur, Zhisheng Yun, Robert M. Jennings, Arthur L. Kotz, Timothy L. Wong, David T. Yust, Timothy J. Nevitt, Kayla A. McGrath
-
Publication number: 20230194765Abstract: A polymeric optical lens has an optical retardance. A same principal axis of the optical retardance can have an orientation within about 5 degrees of a same first direction for each location in at least 60% of a continuous first region of the polymeric optical lens. The first region includes at least 60% of a largest optically active region of the polymeric optical lens. The optical retardance is greater than 10 nm in at least a portion of the largest optically active region.Type: ApplicationFiled: November 28, 2022Publication date: June 22, 2023Inventors: Timothy L. Wong, David J.W. Aastuen, Arthur L. Kotz, Benjamin G. Sonnek, Matthew C. Dachel, John D. Le
-
Publication number: 20220274359Abstract: An optical film includes a plurality of polymeric layers shaped along orthogonal first and second directions. A first curve being an intersection of the optical film with a first plane orthogonal to the second direction and to a reference plane has a best-fit first circular arc subtending a first angle at a center of curvature of the first circular arc of greater than 180 degrees where the optical film has a maximum projected area in the reference plane. A second curve being an intersection of the optical film with a second plane orthogonal to the first direction and to the reference plane has a best-fit second circular arc subtending a second angle at a center of curvature of the second circular arc of at least 30 degrees. Reflectance and transmittance of the optical film are described.Type: ApplicationFiled: May 16, 2022Publication date: September 1, 2022Inventors: Robert M. Jennings, William T. Fay, Jo A. Etter, Arthur L. Kotz, David J.W. Aastuen
-
Patent number: 11358355Abstract: Optical films having a curved shaped and methods of shaping optical films are described. A method of shaping an optical film includes the steps of disposing the optical film adjacent first and second rollers spaced apart along a first direction, securing opposing first and second ends of the optical film, providing a curved mold surface, and shaping the optical film by contacting the optical film with the curved mold surface while stretching the optical film along the first direction and keeping a threshold distance between closest points on the optical film contacting the first roller and contacting the curved mold surface less than the width of the optical film to reduce buckling of the optical film.Type: GrantFiled: October 23, 2018Date of Patent: June 14, 2022Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Robert M. Jennings, William T. Fay, Jo A. Etter, Arthur L. Kotz, David J. W. Aastuen
-
Patent number: 11327010Abstract: System and technique for inspecting a moving film by measuring the levels of light transmission through a thickness dimension of the film are described. The system includes a light source configured to provide light including a particular wavelength, or a particular range of wavelengths. The light from the light source is directed toward a first surface of the film, and an image capturing device is located adjacent to the light source on a second side of the film opposite the first surface, the image capturing device configured to measure the levels of light intensity exiting a second surface of the film. Measurements of the level of the light intensity passing through the film may be spatially synchronized to physical positions along the film to generated at least one roll map indicative of light transmission characteristics of the film over the imaged portions of the film.Type: GrantFiled: January 28, 2019Date of Patent: May 10, 2022Assignee: 3M Innovative Properties CompanyInventors: Joseph R. Nesbitt, Steven P. Floeder, Michael L. Ruegsegger, Crystal A. Dehn, Arthur L. Kotz
-
Publication number: 20210215865Abstract: Optical films, such as reflective polarizer films, and optical systems including the optical films are described. An optical system includes one or more optical lenses having at least one curved major surface, a partial reflector, and a reflective polarizer. For a substantially normally incident light in a predetermined wavelength range extending at least from about 450 nm to about 600 nm: the partial reflector has an average optical reflectance of at least 30%, and the reflective polarizer has an average optical reflectance Rs for a first polarization state, an average optical transmittance Tp for an orthogonal second polarization state, and an average optical reflectance Rp for the second polarization state, where Tp?80%, Rp?1%, and 50%?Rs?95%.Type: ApplicationFiled: July 11, 2019Publication date: July 15, 2021Inventors: John D. Le, Zhisheng Yun, Timothy L. Wong, Timothy J. Nevitt, Adam D. Haag, Arthur L. Kotz
-
Publication number: 20210187885Abstract: Optical films having a curved shaped and methods of shaping optical films are described. A method of shaping an optical film includes the steps of disposing the optical film adjacent first and second rollers spaced apart along a first direction, securing opposing first and second ends of the optical film, providing a curved mold surface, and shaping the optical film by contacting the optical film with the curved mold surface while stretching the optical film along the first direction and keeping a threshold distance between closest points on the optical film contacting the first roller and contacting the curved mold surface less than the width of the optical film to reduce buckling of the optical film.Type: ApplicationFiled: October 23, 2018Publication date: June 24, 2021Inventors: Robert M. Jennings, William T. Fay, Jo A. Etter, Arthur L. Kotz, David J.W. Aastuen
-
Publication number: 20210041355Abstract: System and technique for inspecting a moving film by measuring the levels of light transmission through a thickness dimension of the film are described. The system includes a light source configured to provide light including a particular wavelength, or a particular range of wavelengths. The light from the light source is directed toward a first surface of the film, and an image capturing device is located adjacent to the light source on a second side of the film opposite the first surface, the image capturing device configured to measure the levels of light intensity exiting a second surface of the film. Measurements of the level of the light intensity passing through the film may be spatially synchronized to physical positions along the film to generated at least one roll map indicative of light transmission characteristics of the film over the imaged portions of the film.Type: ApplicationFiled: January 28, 2019Publication date: February 11, 2021Inventors: Joseph R. Nesbitt, Steven P. Floeder, Michael L. Ruegsegger, Crystal A. Dehn, Arthur L. Kotz
-
Patent number: 10112315Abstract: Optical films having an optical axis with an orientation that varies along a width of the optical film and having one or more indicia recording the orientation of the optical axis at a plurality of locations in the optical film are provided. Systems and methods for producing and for converting the optical films are provided.Type: GrantFiled: August 17, 2016Date of Patent: October 30, 2018Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Matthew B. Johnson, Steven P. Floeder, Kristy A. Gillette, Arthur L. Kotz, Michael L. Ruegsegger
-
Publication number: 20180215060Abstract: Optical films having an optical axis with an orientation that varies along a width of the optical film and having one or more indicia recording the orientation of the optical axis at a plurality of locations in the optical film are provided. Systems and methods for producing and for converting the optical films are provided.Type: ApplicationFiled: August 17, 2016Publication date: August 2, 2018Inventors: Matthew B. Johnson, Steven P. Floeder, Kristy A. Gillette, Arthur L. Kotz, Michael L. Ruegsegger
-
Patent number: 7057816Abstract: An optical film is provided which comprises a disperse phase of polymeric particles disposed within a continuous birefringent matrix. The film is oriented, typically by stretching, in one or more directions. The size and shape of the disperse phase particles, the volume fraction of the disperse phase, the film thickness, and the amount of orientation are chosen to attain a desired degree of diffuse reflection and total transmission of electromagnetic radiation of a desired wavelength in the resulting film.Type: GrantFiled: January 6, 2006Date of Patent: June 6, 2006Assignee: 3M Innovative Properties CompanyInventors: Richard C. Allen, Arthur L. Kotz, Lockwood W. Carlson, Timothy J. Nevitt, Andrew J. Ouderkirk, Carl A. Stover, Michael F. Weber, Biswaroop Majumdar
-
Patent number: 6999233Abstract: An optical film is provided which comprises a disperse phase of polymeric particles disposed within a continuous birefringent matrix. The film is oriented, typically by stretching, in one or more directions. The size and shape of the disperse phase particles, the volume fraction of the disperse phase, the film thickness, and the amount of orientation are chosen to attain a desired degree of diffuse reflection and total transmission of electromagnetic radiation of a desired wavelength in the resulting film.Type: GrantFiled: December 2, 2004Date of Patent: February 14, 2006Assignee: 3M Innovative Properties CompanyInventors: Richard C. Allen, Arthur L. Kotz, Lockwood W. Carlson, Timothy J. Nevitt, Andrew J. Ouderkirk, Carl A. Stover, Michael F. Weber, Biswaroop Majumdar
-
Patent number: 6987612Abstract: An optical film is provided which comprises a disperse phase of polymeric particles disposed within a continuous birefringent matrix. The film is oriented, typically by stretching, in one or more directions. The size and shape of the disperse phase particles, the volume fraction of the disperse phase, the film thickness, and the amount of orientation are chosen to attain a desired degree of diffuse reflection and total transmission of electromagnetic radiation of a desired wavelength in the resulting film.Type: GrantFiled: July 7, 2003Date of Patent: January 17, 2006Assignee: 3M Innovative Properties CompanyInventors: Richard C. Allen, Arthur L. Kotz, Lockwood W. Carlson, Timothy J. Nevitt, Andrew J. Ouderkirk, Carl A. Stover, Michael F. Weber, Biswaroop Majumdar
-
Patent number: 6760157Abstract: An optical film is provided which comprises a disperse phase of polymeric particles disposed within a continuous birefringent matrix in combination with light directing materials to enable control of light emitted from a lighting fixture or display. The film is oriented, typically by stretching, in one or more directions. The size and shape of the disperse phase particles, the volume fraction of the disperse phase, the film thickness, and the amount of orientation are chosen to attain a desired degree of diffuse reflection and total transmission of electromagnetic radiation of a desired wavelength in the resulting film, and the light directing materials are chosen to control the direction of polarized light reflected from or transmitted by the optical film.Type: GrantFiled: July 25, 2000Date of Patent: July 6, 2004Assignee: 3M Innovative Properties CompanyInventors: Richard C. Allen, Lockwood W. Carlson, Andrew J. Ouderkirk, Michael F. Weber, Arthur L. Kotz, Timothy J. Nevitt, Carl A. Stover, Biswaroop Majumdar
-
Publication number: 20040012855Abstract: An optical film is provided which comprises a disperse phase of polymeric particles disposed within a continuous birefringent matrix. The film is oriented, typically by stretching, in one or more directions. The size and shape of the disperse phase particles, the volume fraction of the disperse phase, the film thickness, and the amount of orientation are chosen to attain a desired degree of diffuse reflection and total transmission of electromagnetic radiation of a desired wavelength in the resulting film.Type: ApplicationFiled: July 7, 2003Publication date: January 22, 2004Applicant: 3M Innovative Properties CompanyInventors: Richard C. Allen, Arthur L. Kotz, Lockwood W. Carlson, Timothy J. Nevitt, Andrew J. Ouderkirk, Carl A. Stover, Michael F. Weber, Biswaroop Majumdar