Patents by Inventor Arthur Lawson

Arthur Lawson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080019706
    Abstract: An optical signal return path system includes a transmitter having a sample clock generator for generating a sample clock and an RF signal receiver for receiving and converting an analog RF data signal into a first data stream of digitized RF data samples at a rate determined by the sample clock. Supplemental channel circuitry provides a second data stream. A multiplexor receives and combines the first data stream and second data stream, and an optical transmitter converting the combined data stream into a serialized optical data signal for transmission over an optical fiber. The second data stream may contain maintenance data reflecting an operational state of the transmitter. A receiver receives the optical data signal and recovers therefrom a digital data stream and an associated first clock having an associated first clock rate. The data stream is stored in a memory device at the first clock rate.
    Type: Application
    Filed: August 13, 2007
    Publication date: January 24, 2008
    Applicant: FINISAR CORPORATION
    Inventors: Frank Levinson, Gerald Sage, Arthur Lawson, Willem Mostert
  • Patent number: 7316568
    Abstract: A simulator for simulating a pulse in a manikin comprises a manikin body. The simulator further comprises a first magnet and a second magnet disposed opposite to each other and spaced apart from each other. The first magnet and second magnet comprise two juxtaposed first and second sub-magnets. The first and second juxtaposed sub-magnets in each magnet are oriented substantially in opposite directions. The first magnet and the second magnet are positioned such that the first sub-magnet of the first magnet is oriented substantially in a same direction as the first sub-magnet of the second magnet and such that the second sub-magnet of the first magnet is oriented substantially in a same direction as the second sub-magnet of the second magnet. The transducer further comprises an armature movably disposed between the first and second magnets. The armature comprises a frame and a solenoid wound adjacent a periphery of the frame. The transducer also comprises a rod attached to the frame of the armature.
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: January 8, 2008
    Assignee: University of Miami
    Inventors: Michael S. Gordon, S. Barry Issenberg, David Arthur Lawson
  • Publication number: 20070277213
    Abstract: An optical signal return path system includes a transmitter having a sample clock generator for generating a sample clock and an RF signal receiver for receiving and converting an analog RF data signal into a first data stream of digitized RF data samples at a rate determined by the sample clock. Supplemental channel circuitry provides a second data stream. A multiplexor receives and combines the first data stream and second data stream, and an optical transmitter converting the combined data stream into a serialized optical data signal for transmission over an optical fiber. The second data stream may contain maintenance data reflecting an operational state of the transmitter. A receiver receives the optical data signal and recovers therefrom a digital data stream and an associated first clock having an associated first clock rate. The data stream is stored in a memory device at the first clock rate.
    Type: Application
    Filed: August 13, 2007
    Publication date: November 29, 2007
    Applicant: Finisar Corporation
    Inventors: Frank Levinson, Gerald Sage, Arthur Lawson, Willem Mostert
  • Publication number: 20070081549
    Abstract: A network tap device array capable of being powered by a power-over Ethernet (“POE”) supply is disclosed. The array enables data from multiple nodes in a communications network to be tapped and forwarded to a plurality of monitoring devices. In one embodiment the network tap device array includes a chassis that is configured to receive a plurality of network tap devices that are each powered by a POE supply. Each network tap device includes network ports for receiving and transmitting network data via communication cables and tap ports for forwarding the tapped network data to the monitoring device. In another embodiment, a sub-chassis includes a plurality of network tap devices and an aggregator that aggregates tapped data from each of the tap devices. The aggregator then forwards the aggregated data to the monitoring device. The sub-chassis can be included in a chassis that is configured to receive multiple populated chassis.
    Type: Application
    Filed: May 31, 2006
    Publication date: April 12, 2007
    Applicant: FINISAR CORPORATION
    Inventors: Christopher Cicchetti, Arthur Lawson, Greta Light, Paul Gentieu, Timothy Beyers, Donald Blackwell
  • Publication number: 20070081553
    Abstract: A network tap device that is configured for operation in a copper Gigabit Ethernet communications network using a power-over-Ethernet (“POE”) electrical supply is disclosed. In one embodiment, a network tap device powered by a POE supply is disclosed, comprising first and second network ports that are configured with receptacles for receiving communication cables. The communication cables are configured to carry both data signals and the POE supply to and from the network tap device. The network tap device further includes first and second tap ports that connect with additional communication cables to a monitoring device. The network tap device also includes control and regulation circuitry that is configured to receive the POE supply from the communication cables via the network ports and to enable components of the network tap device to be operated by the POE supply.
    Type: Application
    Filed: May 31, 2006
    Publication date: April 12, 2007
    Applicant: FINISAR CORPORATION
    Inventors: Christopher Cicchetti, Arthur Lawson, Greta Light, Paul Gentieu, Timothy Beyers, Donald Blackwell
  • Publication number: 20060200708
    Abstract: An bit error rate tester for use in connection with a high speed networks. The bit error rate tester includes transmit and receive ports, as well as a sequence generator, memory, synchronizer, sequence start detect module, and comparator. The sequence generator generates a bit sequence for transmission through a network path. The bit sequence returns to the bit error rate tester by way of the receive port. The synchronizer then bit-aligns the received bit sequence to compensate for idles/fill words added/dropped as the bit sequence transited the network. The synchronized bit sequence is passed to the start word detector which detects start and end words in the bit sequence and instructs the comparator to compare only data between the start and end words. The comparator compares the received bit sequence with a copy of the transmitted bit sequence regenerated from the memory, and calculates a bit error rate.
    Type: Application
    Filed: April 24, 2003
    Publication date: September 7, 2006
    Inventors: Paul Gentieu, Chris Cicchetti, Arthur Lawson, An Huynh, Harold Yang
  • Publication number: 20060025018
    Abstract: The present invention provides an adapter for enabling a host device having an electrical connector compatible with a first protocol that is not connectable with a connector assembly associated with a second protocol to be usable with the second protocol. The adapter includes a printed circuit board having a first end and a second end. The first end includes a first interface formed to removably connect with an electrical connector associated with a first protocol. The second end includes a second interface formed to removably connect with a connector assembly associated with the second protocol. A method of making the adapter includes configuring the first interface on the printed circuit board and integrating the second interface with the printed circuit board. One embodiment includes an adapter for enabling a host device with SFP electrical connectors to be usable with an SAS/SATA protocol.
    Type: Application
    Filed: July 12, 2005
    Publication date: February 2, 2006
    Inventors: Jean-Francois Dube, Arthur Lawson, Timothy Beyers, Donald Blackwell
  • Publication number: 20050273836
    Abstract: A cable node and a cable hub that communicate on a CATV network are configured to switch communication modes without signal loss or degradation due to delays in switching communication modes. In particular, a cable node sends one or more mute commands in an outgoing data stream to the cable hub, causing the cable hub to disable the RF outputs. Afterward, or along with the one or more mute commands, the cable node can send a switch mode command, thereby causing the cable hub to switch to the appropriate next communication mode, such as a communication mode using a new compression rate. When the cable hub has switched to the appropriate next communication mode, the cable hub can then properly receive and decode a corresponding data stream using the next communication mode.
    Type: Application
    Filed: May 12, 2004
    Publication date: December 8, 2005
    Inventors: Randy Oyadomari, Arthur Lawson, Stephen Gordy
  • Publication number: 20050273837
    Abstract: An optical signal return path system analog RF signals are sampled using a master clock frequency, and combined with digital data such as Ethernet data at a cable node. The cable node sends the combined signals on a return path over a fiber optic medium to the cable hub. The cable hub extracts an approximate in-frequency replicate of a master clock signal, and can use the replicate master clock signal to desample the digitized RF signals back to analog. The cable hub can further use the replicate of the master clock signal to serialize Ethernet data, and send the Ethernet data back to the cable node via an optical cable in the forward direction. Accordingly, a single master clock signal can be used on a CATV network for encoding/decoding, and transmitting a variety of data signals, which enhances the integrity and reliability of the data signals.
    Type: Application
    Filed: August 2, 2004
    Publication date: December 8, 2005
    Inventors: Randy Oyadomari, Arthur Lawson, Stephen Gordy
  • Publication number: 20050254523
    Abstract: A cable node and a cable hub that communicate on a CATV network are configured to switch compression modes without signal noise or degradation due to excessive delays in switching compression modes. In particular, a cable node sends one or more mute commands in an outgoing data stream to the cable hub, causing the cable hub to disable the RF outputs. Afterward, or along with the one or more mute commands, the cable node can send a switch mode command, thereby causing the cable hub to switch to the appropriate next communication mode, such as a communication mode using a new compression rate. When the cable node and the cable hub have switched to the appropriate next communication mode, the cable hub can then properly receive a corresponding data stream from the cable node using the next communication mode.
    Type: Application
    Filed: May 12, 2004
    Publication date: November 17, 2005
    Inventors: Randy Oyadomari, Arthur Lawson, Stephen Gordy
  • Publication number: 20050114663
    Abstract: Secure point to point network communications. Secure point to point network communications are accomplished by sending data across a secure link. Trusted partners at the link are matched to each other. To ensure that no un-trusted partners are on the link, authentication is performed. One of the points may be a secure tap. The secure tap authenticates a trusted partner by receiving a hardware embedded encryption key or value derived from the hardware embedded encryption key from the trusted partner. Data sent on the trusted link is encrypted to prevent interception of the data. The secure tap polices the link to ensure that no un-trusted partners are attached to the link and that the trusted partner is not removed from the link. If un-trusted partners are added to the link or trusted partners removed from the link, the secure tap ceases sending data.
    Type: Application
    Filed: October 28, 2004
    Publication date: May 26, 2005
    Inventors: Kevin Cornell, Paul Gentieu, Arthur Lawson, Stephen Gordy, Lucy Hosking
  • Publication number: 20050114697
    Abstract: Secure point to point network connections. Secure communications are accomplished between connection points. The first partner sends authentication information to a second partner. The second partner authenticates the authentication information from the first partner to verify the identity of the first partner. If the identity of the first partner is verified, high-speed data maybe streamed to the first partner. A connection between the first and second partners is policed to discover unauthorized devices connected to the connection or to discover the disconnection of a partner from the connection. If an unauthorized device is discovered or if a partner is removed, high-speed data is no longer sent on the connection.
    Type: Application
    Filed: November 9, 2004
    Publication date: May 26, 2005
    Inventors: Kevin Cornell, Paul Gentieu, Arthur Lawson, Stephen Gordy, Lucy Hosking
  • Publication number: 20050114710
    Abstract: A host bus adapter for use in secure network devices. The host bus adapter includes a network connector for connecting to a network such as a fiber-optic or Ethernet network. The network connector may connect to a physical layer device where the physical layer device is configured to receive high-speed network communications from the network connector. A decryption module is connected to the physical layer device for the decrypting high-speed encrypted network traffic received from the physical layer device. The host bus adapter includes an interface that is configured to connect to the host device. Authentication logic is included in the host bus adapter to authenticate and/or authenticate to a trusted partner.
    Type: Application
    Filed: October 28, 2004
    Publication date: May 26, 2005
    Inventors: Kevin Cornell, Paul Gentieu, Arthur Lawson, Stephen Gordy, Lucy Hosking
  • Publication number: 20050010691
    Abstract: Protocol analyzer systems enable synchronization of timestamps and the capture of data across serially chained boxes that are used together to monitor and capture network data. Through experiment, it can be determined how long it takes to propagate a signal to each box in the chain. These values are then recorded in each box in a delay register so that each box has a recorded delay value corresponding to the time required to propagate a signal to or receive a signal from every other box. Each box applies a control signal, such as a run signal or a trigger signal, to the ports in the box only after the expiration of the delay value indicated in the delay register. The box initiating the signal has the largest delay since the other boxes need to get the signal before the boxes can begin to operate with a common counter, with successive boxes having smaller delays.
    Type: Application
    Filed: June 30, 2004
    Publication date: January 13, 2005
    Inventors: Randy Oyadomari, Arthur Lawson