Patents by Inventor Arthur Magaljan

Arthur Magaljan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230370625
    Abstract: A load balancing method for video decoding. The load balancing includes first determining which hardware devices are suitable for the new decoding process, and determining the current load of each of the suitable hardware devices. From the suitable devices potential devices are selected having a current load less than a threshold and overloaded devices are selected having a load greater than or equal to the threshold. If there are no suitable devices, then the decoding process is implemented by software decoding. If the list of potential hardware devices includes only one potential hardware device, then the decoding process is implemented on the hardware device. If the list of potential hardware devices includes more than one potential hardware device, then it is determined how many decoding processes are currently running on each potential hardware device, and the new decoding process is implemented on the potential hardware device having the fewest processes.
    Type: Application
    Filed: July 19, 2023
    Publication date: November 16, 2023
    Inventors: Kristine Strandby, Jeppe Jensen, Arthur Magaljan
  • Patent number: 11778210
    Abstract: A load balancing method for video decoding. The load balancing includes first determining which hardware devices are suitable for the new decoding process, and determining the current load of each of the suitable hardware devices. From the suitable devices potential devices are selected having a current load less than a threshold and overloaded devices are selected having a load greater than or equal to the threshold. If there are no suitable devices, then the decoding process is implemented by software decoding. If the list of potential hardware devices includes only one potential hardware device, then the decoding process is implemented on the hardware device. If the list of potential hardware devices includes more than one potential hardware device, then it is determined how many decoding processes are currently running on each potential hardware device, and the new decoding process is implemented on the potential hardware device having the fewest processes.
    Type: Grant
    Filed: December 21, 2022
    Date of Patent: October 3, 2023
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kristine Strandby, Jeppe Jensen, Arthur Magaljan
  • Publication number: 20230127325
    Abstract: A load balancing method for video decoding. The load balancing includes first determining which hardware devices are suitable for the new decoding process, and determining the current load of each of the suitable hardware devices. From the suitable devices potential devices are selected having a current load less than a threshold and overloaded devices are selected having a load greater than or equal to the threshold. If there are no suitable devices, then the decoding process is implemented by software decoding. If the list of potential hardware devices includes only one potential hardware device, then the decoding process is implemented on the hardware device. If the list of potential hardware devices includes more than one potential hardware device, then it is determined how many decoding processes are currently running on each potential hardware device, and the new decoding process is implemented on the potential hardware device having the fewest processes.
    Type: Application
    Filed: December 21, 2022
    Publication date: April 27, 2023
    Inventors: Kristine Strandby, Jeppe Jensen, Arthur Magaljan
  • Patent number: 11563961
    Abstract: A load balancing method for video decoding. The load balancing includes first determining which hardware devices are suitable for the new decoding process, and determining the current load of each of the suitable hardware devices. From the suitable devices potential devices are selected having a current load less than a threshold and overloaded devices are selected having a load greater than or equal to the threshold. If there are no suitable devices, then the decoding process is implemented by software decoding. If the list of potential hardware devices includes only one potential hardware device, then the decoding process is implemented on the hardware device. If the list of potential hardware devices includes more than one potential hardware device, then it is determined how many decoding processes are currently running on each potential hardware device, and the new decoding process is implemented on the potential hardware device having the fewest processes.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: January 24, 2023
    Assignee: Canon Kabushiki Kaisha
    Inventors: Kristine Strandby, Jeppe Jensen, Arthur Magaljan
  • Publication number: 20210321123
    Abstract: A load balancing method for video decoding. The load balancing includes first determining which hardware devices are suitable for the new decoding process, and determining the current load of each of the suitable hardware devices. From the suitable devices potential devices are selected having a current load less than a threshold and overloaded devices are selected having a load greater than or equal to the threshold. If there are no suitable devices, then the decoding process is implemented by software decoding. If the list of potential hardware devices includes only one potential hardware device, then the decoding process is implemented on the hardware device. If the list of potential hardware devices includes more than one potential hardware device, then it is determined how many decoding processes are currently running on each potential hardware device, and the new decoding process is implemented on the potential hardware device having the fewest processes.
    Type: Application
    Filed: May 30, 2019
    Publication date: October 14, 2021
    Inventors: Kristine Strandby, Jeppe Jensen, Arthur Magaljan