Patents by Inventor Arthur R. DiNicolantonio

Arthur R. DiNicolantonio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230382730
    Abstract: A method and apparatus for reforming carbonaceous material into syngas containing hydrogen and CO gases is disclosed. In one embodiment, a hydrogen rich torch reactor is provided for defining a reaction zone proximate to torch flame. One input of the reactor receives input material to be processed. Further inputs may be provided, such as for example to introduce steam and/or gases such as methane, oxygen, hydrogen, or the like.
    Type: Application
    Filed: August 11, 2023
    Publication date: November 30, 2023
    Inventors: Clifton T. Knight, Arthur R. DiNicolantonio, Erik M. Howard, Darrell Poteet, Richard C. Stell
  • Patent number: 11807531
    Abstract: A method and apparatus for reforming carbonaceous material into syngas containing hydrogen and CO gases is disclosed. In one embodiment, a hydrogen rich torch reactor is provided for defining a reaction zone proximate to torch flame. One input of the reactor receives input material to be processed. Further inputs may be provided, such as for example to introduce steam and/or gases such as methane, oxygen, hydrogen, or the like.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: November 7, 2023
    Assignee: KNIGHTHAWK ETEC, INC.
    Inventors: Clifton T. Knight, Arthur R. DiNicolantonio, Erik M. Howard, Darrell Poteet, Richard C. Stell
  • Publication number: 20210009412
    Abstract: A method and apparatus for reforming carbonaceous material into syngas containing hydrogen and CO gases is disclosed. In one embodiment, a hydrogen rich torch reactor is provided for defining a reaction zone proximate to torch flame. One input of the reactor receives input material to be processed. Further inputs may be provided, such as for example to introduce steam and/or gases such as methane, oxygen, hydrogen, or the like.
    Type: Application
    Filed: July 9, 2019
    Publication date: January 14, 2021
    Inventors: Clifton T. Knight, Arthur R. DiNicolantonio, Erik M. Howard, Darrell Poteet, Richard C. Stell
  • Publication number: 20130156656
    Abstract: This invention relates to a process and system for cracking hydrocarbon feedstock containing vacuum resid comprising: (a) subjecting a vacuum resid to a first thermal conversion in a thermal conversion reactor (such as delayed coker, fluid coker, Flexicoker™, visbreaker and catalytic hydrovisbreaker) where at least 30 wt % of the vacuum resid is converted to material boiling below 1050° F. (566° C.); (b) introducing said thermally converted resid to a vapor/liquid separator, said separator being integrated into a steam cracking furnace, to form a vapor phase and liquid phase; (c) passing said vapor phase to the radiant furnace in said steam cracking furnace; and (d) recovering at least 30 wt % olefins from the material exiting the radiant furnace (based upon the weight of the total hydrocarbon material exiting the radiant furnace).
    Type: Application
    Filed: February 15, 2013
    Publication date: June 20, 2013
    Applicant: ExxonMobil Chemical Patents Inc.
    Inventors: S. Mark Davis, Richard C. Stell, Jiunn-Shyan Liou, Stephen H. Brown, Paul F. Keusenkothen, Arthur R. Dinicolantonio, John J. Waldrop
  • Patent number: 8399729
    Abstract: This invention relates to a process and system for cracking hydrocarbon feedstock containing vacuum resid comprising: (a) subjecting a vacuum resid to a first thermal conversion in a thermal conversion reactor (such as delayed coker, fluid coker, Flexicoker™, visbreaker and catalytic hydrovisbreaker) where at least 30 wt % of the vacuum resid is converted to material boiling below 1050° F. (566° C.); (b) introducing said thermally converted resid to a vapor/liquid separator, said separator being integrated into a steam cracking furnace, to form a vapor phase and liquid phase; (c) passing said vapor phase to the radiant furnace in said steam cracking furnace; and (d) recovering at least 30 wt % olefins from the material exiting the radiant furnace (based upon the weight of the total hydrocarbon material exiting the radiant furnace).
    Type: Grant
    Filed: July 9, 2010
    Date of Patent: March 19, 2013
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: S. Mark Davis, Richard C. Stell, Jiunn-Shyan Liou, Stephen H. Brown, Paul F. Keusenkothen, Arthur R. DiNicolantonio, John J. Waldrop
  • Patent number: 8173854
    Abstract: A process for cracking a hydrocarbon feedstock containing salt and/or particulate matter, wherein said hydrocarbon feedstock containing salt and/or particulate matter is partially desalted, e.g., by passing through a centrifugal separator, heated, then separated into a vapor phase and a liquid phase by flashing in a flash/separation vessel, separating and cracking the vapor phase which comprises less than about 98% of the hydrocarbon feedstock containing salt and/or particulate matter, and recovering cracked product.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: May 8, 2012
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: James N. McCoy, Arthur R. DiNicolantonio, Richard C. Stell
  • Publication number: 20120006723
    Abstract: This invention relates to a process and system for cracking hydrocarbon feedstock containing vacuum resid comprising: (a) subjecting a vacuum resid to a first thermal conversion in a thermal conversion reactor (such as delayed coker, fluid coker, Flexicoker™, visbreaker and catalytic hydrovisbreaker) where at least 30 wt % of the vacuum resid is converted to material boiling below 1050° F. (566° C.); (b) introducing said thermally converted resid to a vapor/liquid separator, said separator being integrated into a steam cracking furnace, to form a vapor phase and liquid phase; (c) passing said vapor phase to the radiant furnace in said steam cracking furnace; and (d) recovering at least 30 wt % olefins from the material exiting the radiant furnace (based upon the weight of the total hydrocarbon material exiting the radiant furnace).
    Type: Application
    Filed: July 9, 2010
    Publication date: January 12, 2012
    Inventors: S. Mark Davis, Richard C. Stell, Jiunn-Shyan Liou, Stephen H. Brown, Paul F. Keusenkothen, Arthur R. Dinicolantonio, John J. Waldrop
  • Patent number: 7578929
    Abstract: A process for feeding or cracking heavy hydrocarbon feedstock containing non-volatile hydrocarbons comprising: heating the heavy hydrocarbon feedstock, mixing the heavy hydrocarbon feedstock with a fluid and/or a primary dilution steam stream to form a mixture, flashing the mixture to form a vapor phase and a liquid phase, and varying the amount of the fluid and/or the primary dilution steam stream mixed with the heavy hydrocarbon feedstock in accordance with at least one selected operating parameter of the process, such as the temperature of the flash stream before entering the flash drum.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: August 25, 2009
    Assignee: Exxonmoil Chemical Patents Inc.
    Inventors: Richard C. Stell, Arthur R. Dinicolantonio, James Mitchell Frye, David B. Spicer, James N. McCoy, Robert David Strack
  • Patent number: 7553460
    Abstract: A process for cracking hydrocarbon feedstock containing resid comprising: heating the feedstock, mixing the heated feedstock with a fluid and/or a primary dilution steam stream to form a mixture, flashing the mixture to form a vapor phase and a liquid phase which collect as bottoms and removing the liquid phase, separating and cracking the vapor phase, and cooling the product effluent.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: June 30, 2009
    Assignee: Exxonmobil Chemical Patents Inc.
    Inventors: Richard C. Stell, Jennifer L. Bancroft, Arthur R. Dinicolantonio, Subramanian Annamalai, James N. McCoy, Paul F. Keusenkothen, George Stephens, John R. Messinger, James Mitchell Frye, Nick G. Vidonic, George J. Balinsky
  • Publication number: 20080128330
    Abstract: An apparatus for on-line cleaning and maintaining the cleanliness of a transfer line exchanger tube is provided. In one embodiment, the apparatus includes a housing having a first end, a second end and a longitudinal axis, the housing further including a first inlet for introducing a flushing fluid to the transfer line exchanger tube, the first inlet disposed proximate the first end of the housing, a second inlet for providing a product effluent comprising hydrocarbons and an outlet for placing in fluid communication with an inlet of the transfer line exchanger tube and a critical flow nozzle or flow control orifice, the critical flow nozzle or flow control orifice in fluid communication with the first inlet of the housing. Systems and processes for cleaning and maintaining the cleanliness of a transfer line exchanger are also disclosed.
    Type: Application
    Filed: December 5, 2006
    Publication date: June 5, 2008
    Inventors: James N. McCoy, Arthur R. DiNicolantonio, Blair H. Margot, Subramanian Annamalai, Stephen J. Vande Stouwe
  • Patent number: 7193123
    Abstract: A process for cracking hydrocarbon feedstock containing resid comprising: heating the feedstock, mixing the heated feedstock with a fluid and/or a primary dilution steam stream to form a mixture, flashing the mixture to form a vapor phase and a liquid phase which collect as bottoms and removing the liquid phase, separating and cracking the vapor phase, and cooling the product effluent.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: March 20, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard C. Stell, Jennifer L. Bancroft, Arthur R. DiNicolantonio, Subramanian Annamalai, James N. McCoy, Paul F. Keusenkothen, George Stephens, John R. Messinger, James Mitchell Frye, Nick G. Vidonic, George J. Balinsky
  • Patent number: 7138047
    Abstract: A process for feeding or cracking heavy hydrocarbon feedstock containing non-volatile hydrocarbons comprising: heating the heavy hydrocarbon feedstock, mixing the heavy hydrocarbon feedstock with a fluid and/or a primary dilution steam stream to form a mixture, flashing the mixture to form a vapor phase and a liquid phase, and varying the amount of the fluid and/or the primary dilution steam stream mixed with the heavy hydrocarbon feedstock in accordance with at least one selected operating parameter of the process, such as the temperature of the flash stream before entering the flash drum.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: November 21, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard C. Stell, Arthur R. DiNicolantonio, James Mitchell Frye, David B. Spicer, James N. McCoy, Robert David Strack
  • Patent number: 7097758
    Abstract: A process to increase the non-volatile removal efficiency in a flash drum in the steam cracking system. The gas flow from the convection section is converted from mist flow to annular flow before entering the flash drum to increase the removal efficiency. The conversion of gas flow from mist flow to annular flow is accomplished by subjecting the gas flow first to at least one expander and then to bends of various degrees and force the flow to change directions at least once. The change of gas flow from mist to annular helps coalesce fine liquid droplets and thus being removed from the vapor phase.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: August 29, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Richard C. Stell, Jennifer L. Bancroft, Arthur R. Dinicolantonio, George Stephens
  • Patent number: 7090765
    Abstract: A process for treating hydrocarbon feed in a furnace, the process comprising: (a) heating hydrocarbon feed, (b) adding water to the heated feed, (c) adding dilution steam to the heated feed to form a mixture, (d) heating the resulting mixture and feeding the resulting heated mixture to the furnace, wherein the water in (b) is added in an amount of from at least about 1% to 100% based on water and dilution steam by weight.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: August 15, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David B. Spicer, Arthur R. Dinicolantonio, James Mitchell Frye, Richard C. Stell
  • Publication number: 20040004027
    Abstract: A process for treating hydrocarbon feed in a furnace, the process comprising: (a) heating hydrocarbon feed, (b) adding water to the heated feed, (c) adding dilution steam to the heated feed to form a mixture, (d) heating the resulting mixture and feeding the resulting heated mixture to the furnace, wherein the water in (b) is added in an amount of from at least about 1% to 100% based on water and dilution steam by weight.
    Type: Application
    Filed: July 3, 2002
    Publication date: January 8, 2004
    Inventors: David B. Spicer, Arthur R. Dinicolantonio, James Mitchell Frye, Richard C. Stell
  • Publication number: 20040004028
    Abstract: A process to increase the non-volatile removal efficiency in a flash drum in the steam cracking system. The gas flow from the convection section is converted from mist flow to annular flow before entering the flash drum to increase the removal efficiency. The conversion of gas flow from mist flow to annular flow is accomplished by subjecting the gas flow first to at least one expander and then to bends of various degrees and force the flow to change directions at least once. The change of gas flow from mist to annular helps coalesce fine liquid droplets and thus being removed from the vapor phase.
    Type: Application
    Filed: July 3, 2002
    Publication date: January 8, 2004
    Inventors: Richard C. Stell, Jennifer L. Bancroft, Arthur R. Dinicolantonio, George Stephens
  • Publication number: 20040004022
    Abstract: A process for feeding or cracking heavy hydrocarbon feedstock containing non-volatile hydrocarbons comprising: heating the heavy hydrocarbon feedstock, mixing the heavy hydrocarbon feedstock with a fluid and/or a primary dilution steam stream to form a mixture, flashing the mixture to form a vapor phase and a liquid phase, and varying the amount of the fluid and/or the primary dilution steam stream mixed with the heavy hydrocarbon feedstock in accordance with at least one selected operating parameter of the process, such as the temperature of the flash stream before entering the flash drum.
    Type: Application
    Filed: July 3, 2002
    Publication date: January 8, 2004
    Inventors: Richard C. Stell, Arthur R. DiNicolantonio, James Mitchell Frye, David B. Spicer, James N. McCoy, Robert David Strack
  • Patent number: 5092761
    Abstract: A method and apparatus for reducing NO.sub.x emissions from premix burners by recirculating flue gas. Flue gas is drawn from the furnace through a pipe or pipes by the aspirating effect of fuel gas and combustion air passing through a venturi portion of a burner tube. The flue gas mixes with combustion air in a primary air chamber prior to combustion to dilute the concentration of O.sub.2 in the combustion air, which lowers flame temperature and thereby reduces NO.sub.x emissions. The flue gas recirculating system may be retrofitted into existing premix burners or may be incorporated in new low NO.sub.x burners.
    Type: Grant
    Filed: November 19, 1990
    Date of Patent: March 3, 1992
    Assignee: Exxon Chemical Patents Inc.
    Inventor: Arthur R. Dinicolantonio
  • Patent number: 4499055
    Abstract: An improved single-pass, radiant tube for steam cracking hydrocarbons is capable of self-absorbing differential thermal expansion during furnace operation by virtue of tube sections being offset.
    Type: Grant
    Filed: September 14, 1981
    Date of Patent: February 12, 1985
    Assignee: Exxon Research & Engineering Co.
    Inventors: Arthur R. DiNicolantonio, Victor K. Wei
  • Patent number: 4457364
    Abstract: In thermal cracking of hydrocarbons, especially steam cracking to light olefins, a transfer line heat exchanger unit is provided in which cracked gas flows from a furnace into heat exchange tubes, which comprises a distributor having an inlet for said gas and two or three diverging branches forming with said distributor a wye or tri-piece for passage of gas, each branch having along its length a substantially uniform cross-sectional area and being in fluid flow communication with a respective cooling tube. Unfired residence time and pressure drop are reduced, thereby improving selectivity to ethylene.
    Type: Grant
    Filed: March 18, 1982
    Date of Patent: July 3, 1984
    Assignee: Exxon Research & Engineering Co.
    Inventors: Arthur R. DiNicolantonio, Bill Moustakakis