Patents by Inventor Arthur Register

Arthur Register has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10697804
    Abstract: A vibration sensing optical fiber cable is provided. The cable includes at least one optical fiber embedded in the cable jacket such that vibrations from the environment are transmitted into the cable jacket to the optical fiber. The cable is configured in a variety of ways, including through spatial arrangement of the sensing fibers, through acoustic impedance matched materials, through internal vibration reflecting structures, and/or through acoustic lens features to enhance sensitivity of the cable for vibration detection/monitoring.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: June 30, 2020
    Assignee: Corning Research & Development Corporation
    Inventors: Riley Saunders Freeland, Michael John Gimblet, Jason Clay Lail, James Arthur Register, III, David Alan Seddon
  • Patent number: 10684162
    Abstract: A vibration sensing optical fiber cable is provided. The cable includes at least one optical fiber embedded in the cable jacket such that vibrations from the environment are transmitted into the cable jacket to the optical fiber. The cable is configured in a variety of ways, including through spatial arrangement of the sensing fibers, through acoustic impedance matched materials, through internal vibration reflecting structures, and/or through acoustic lens features to enhance sensitivity of the cable for vibration detection/monitoring.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: June 16, 2020
    Assignee: CORNING RESEARCH & DEVELOPMENT CORPORATION
    Inventors: Riley Saunders Freeland, Michael John Gimblet, Jason Clay Lail, James Arthur Register, III, David Alan Seddon
  • Patent number: 10473872
    Abstract: A large and small diameter optical fiber carrying cable is provided. The cable includes a cable body including an inner surface defining a channel within the cable body, a first group of optical fibers comprising a plurality of first optical fibers located within the channel and a second group of optical fibers comprising a plurality of second optical fibers located within the channel. The optical core diameter of the first optical fibers is larger than the optical core diameter of the second optical fibers.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: November 12, 2019
    Assignee: Corning Optical Communications LLC
    Inventor: James Arthur Register, III
  • Patent number: 10386593
    Abstract: A strain sensing optical fiber cable is provided. The cable includes at least one optical fiber embedded in the cable jacket such that vibrations from the environment are transmitted into the cable jacket to the optical fiber. The cable is configured in a variety of ways, including through spatial arrangement of the sensing fibers, through acoustic impedance matched materials, through internal vibration reflecting structures, and/or through acoustic lens features to enhance sensitivity of the cable for strain/vibration detection/monitoring.
    Type: Grant
    Filed: May 25, 2018
    Date of Patent: August 20, 2019
    Assignee: Corning Research & Development Corporation
    Inventors: Riley Saunders Freeland, Michael John Gimblet, Jason Clay Lail, Peter William Loomis, James Arthur Register, III, David Alan Seddon
  • Patent number: 10205538
    Abstract: Distributed communications systems providing and supporting radio frequency (RF) communication services and digital data services, and related components and methods are disclosed. The RF communication services can be distributed over optical fiber to client devices, such as remote units for example. Power can also be distributed over electrical medium that is provided to distribute digital data services, if desired, to provide power to remote communications devices and/or client devices coupled to the remote communications devices for operation. In this manner, as an example, the same electrical medium used to transport digital data signals in the distributed antenna system can also be employed to provide power to the remote communications devices and/or client devices coupled to the remote communications devices.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: February 12, 2019
    Assignee: Corning Optical Communications LLC
    Inventors: Igor Berlin, William Patrick Cune, Jason Elliott Greene, Christian Heidler, James Arthur Register, III, Wolfgang Gottfried Tobias Schweiker
  • Publication number: 20190033543
    Abstract: A strain sensing optical fiber cable is provided. The cable includes at least one optical fiber embedded in the cable jacket such that vibrations from the environment are transmitted into the cable jacket to the optical fiber. The cable is configured in a variety of ways, including through spatial arrangement of the sensing fibers, through acoustic impedance matched materials, through internal vibration reflecting structures, and/or through acoustic lens features to enhance sensitivity of the cable for strain/vibration detection/monitoring.
    Type: Application
    Filed: May 25, 2018
    Publication date: January 31, 2019
    Inventors: Riley Saunders Freeland, Michael John Gimblet, Jason Clay Lail, Peter William Loomis, James Arthur Register, III, David Alan Seddon
  • Publication number: 20190033125
    Abstract: A vibration sensing optical fiber cable is provided. The cable includes at least one optical fiber embedded in the cable jacket such that vibrations from the environment are transmitted into the cable jacket to the optical fiber. The cable is configured in a variety of ways, including through spatial arrangement of the sensing fibers, through acoustic impedance matched materials, through internal vibration reflecting structures, and/or through acoustic lens features to enhance sensitivity of the cable for vibration detection/monitoring.
    Type: Application
    Filed: May 25, 2018
    Publication date: January 31, 2019
    Inventors: Riley Saunders Freeland, Michael John Gimblet, Jason Clay Lail, James Arthur Register, III, David Alan Seddon
  • Publication number: 20180348017
    Abstract: A vibration sensing optical fiber cable is provided. The cable includes at least one optical fiber embedded in the cable jacket such that vibrations from the environment are transmitted into the cable jacket to the optical fiber. The cable is configured in a variety of ways, including through spatial arrangement of the sensing fibers, through acoustic impedance matched materials, through internal vibration reflecting structures, and/or through acoustic lens features to enhance sensitivity of the cable for vibration detection/monitoring.
    Type: Application
    Filed: May 25, 2018
    Publication date: December 6, 2018
    Inventors: Riley Saunders Freeland, Michael John Gimblet, Jason Clay Lail, James Arthur Register, David Alan Seddon
  • Publication number: 20180054260
    Abstract: Distributed communications systems providing and supporting radio frequency (RF) communication services and digital data services, and related components and methods are disclosed. The RF communication services can be distributed over optical fiber to client devices, such as remote units for example. Power can also be distributed over electrical medium that is provided to distribute digital data services, if desired, to provide power to remote communications devices and/or client devices coupled to the remote communications devices for operation. In this manner, as an example, the same electrical medium used to transport digital data signals in the distributed antenna system can also be employed to provide power to the remote communications devices and/or client devices coupled to the remote communications devices.
    Type: Application
    Filed: October 27, 2017
    Publication date: February 22, 2018
    Inventors: Igor Berlin, William Patrick Cune, Jason Elliott Greene, Christian Heidler, James Arthur Register, III, Wolfgang Gottfried Tobias Schweiker
  • Patent number: 9813164
    Abstract: Distributed communications systems providing and supporting radio frequency (RF) communication services and digital data services, and related components and methods are disclosed. The RF communication services can be distributed over optical fiber to client devices, such as remote units for example. Power can also be distributed over electrical medium that is provided to distribute digital data services, if desired, to provide power to remote communications devices and/or client devices coupled to the remote communications devices for operation. In this manner, as an example, the same electrical medium used to transport digital data signals in the distributed antenna system can also be employed to provide power to the remote communications devices and/or client devices coupled to the remote communications devices.
    Type: Grant
    Filed: October 24, 2016
    Date of Patent: November 7, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Igor Berlin, William Patrick Cune, Jason Elliott Greene, Christian Heidler, James Arthur Register, III, Wolfgang Gottfried Tobias Schweiker
  • Publication number: 20170315319
    Abstract: A fiber optic cable includes a jacket having an outside diameter and an inside diameter, the inside diameter defining a central bore having a centerline, a pair of tightly buffered optical fibers extending longitudinally through the central bore, and a pair of strength members extending longitudinally through the central bore, wherein the optical fibers and the strength members are un-stranded and arranged such that each one of the optical fibers is diametrically opposed from the other optical fiber and abutting the pair of strength members.
    Type: Application
    Filed: July 20, 2017
    Publication date: November 2, 2017
    Inventors: Michael John Gimblet, James Arthur Register, III
  • Patent number: 9788469
    Abstract: A shielded combined optical communication and conductor cable is provided. The cable includes a cable body having an inner surface defining a channel within the cable body. The cable includes an optical transmission element located within the channel and an electrical conducting element located within the channel. The cable includes an electromagnetic shield located within the channel and surrounding at least the electrical conducting element. The electromagnetic shield includes an elongate yarn strand or other strand material that supports a metal material that acts to limit electromagnetic fields from traversing across the electromagnetic shield. The strands may be unbraided and may be helically wrapped or longitudinally positioned within the cable body.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: October 10, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Michael John Gimblet, James Arthur Register, III
  • Patent number: 9746630
    Abstract: A hybrid cable includes a jacket defining a cavity therein, a central strength member, a ribbon unit having a plurality of optical fibers, and a conductor cable, wherein the conductor cable and the ribbon unit are stranded around the central strength member to extend through the cavity of the jacket. A method of manufacturing a hybrid optical and power cable includes stranding at least one ribbon unit and at least one conductive power cable around a strength member and extruding a jacket around the stranded at least one ribbon unit and at least one conductive power cable.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: August 29, 2017
    Assignee: Corning Optical Communications LLC
    Inventor: James Arthur Register, III
  • Patent number: 9581778
    Abstract: Micromodule cables include subunit, tether cables having both electrical conductors and optical fibers. The subunits can be stranded within the micromodule cable jacket so that the subunits can be accessed from the micromodule cable at various axial locations along the cable without using excessive force. Each subunit can include two electrical conductors so that more power can be provided to electrical devices connected to the subunit.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: February 28, 2017
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventors: Michael Paul O'Day, James Arthur Register, III
  • Publication number: 20170041079
    Abstract: Distributed communications systems providing and supporting radio frequency (RF) communication services and digital data services, and related components and methods are disclosed. The RF communication services can be distributed over optical fiber to client devices, such as remote units for example. Power can also be distributed over electrical medium that is provided to distribute digital data services, if desired, to provide power to remote communications devices and/or client devices coupled to the remote communications devices for operation. In this manner, as an example, the same electrical medium used to transport digital data signals in the distributed antenna system can also be employed to provide power to the remote communications devices and/or client devices coupled to the remote communications devices.
    Type: Application
    Filed: October 24, 2016
    Publication date: February 9, 2017
    Inventors: Igor Berlin, William Patrick Cune, Jason Elliott Greene, Christian Heidler, James Arthur Register, III, Wolfgang Gottfried Tobias Schweiker
  • Publication number: 20170031120
    Abstract: A fiber optic drop cable includes an optical fiber, a tight buffer layer on the optical fiber, at least one strength member, and a jacket surrounding the tight buffer layer. The jacket is coupled to the at least one strength member by at least partial embedment of at least one of the strength members in the jacket, which facilitates coupling between the jacket and strength member. The fiber optic drop cable has an average delta attenuation of 0.4 dB or less at a reference wavelength of 1625 nanometers with the fiber optic cable wrapped 2 turns about a 7.5 millimeter diameter mandrel.
    Type: Application
    Filed: October 13, 2016
    Publication date: February 2, 2017
    Inventors: Cory Fritz Guenter, James Arthur Register, III, Todd Ray Rhyne
  • Publication number: 20160353617
    Abstract: A shielded combined optical communication and conductor cable is provided. The cable includes a cable body having an inner surface defining a channel within the cable body. The cable includes an optical transmission element located within the channel and an electrical conducting element located within the channel. The cable includes an electromagnetic shield located within the channel and surrounding at least the electrical conducting element. The electromagnetic shield includes an elongate yarn strand or other strand material that supports a metal material that acts to limit electromagnetic fields from traversing across the electromagnetic shield. The strands may be unbraided and may be helically wrapped or longitudinally positioned within the cable body.
    Type: Application
    Filed: May 25, 2016
    Publication date: December 1, 2016
    Inventors: Michael John Gimblet, James Arthur Register, III
  • Publication number: 20160341923
    Abstract: A fiber optic cable includes a jacket having an outside diameter and an inside diameter, the inside diameter defining a central bore having a centerline, a pair of tightly buffered optical fibers extending longitudinally through the central bore, and a pair of strength members extending longitudinally through the central bore, wherein the optical fibers and the strength members are un-stranded and arranged such that each one of the optical fibers is diametrically opposed from the other optical fiber and abutting the pair of strength members.
    Type: Application
    Filed: May 18, 2016
    Publication date: November 24, 2016
    Inventors: Michael John Gimblet, James Arthur Register
  • Patent number: 9494754
    Abstract: A fiber optic drop cable includes an optical fiber, a tight buffer layer on the optical fiber, at least one strength member, and a jacket surrounding the tight buffer layer. The jacket is coupled to the at least one strength member by at least partial embedment of at least one of the strength members in the jacket, which facilitates coupling between the jacket and strength member. The fiber optic drop cable has an average delta attenuation of 0.4 dB or less at a reference wavelength of 1625 nanometers with the fiber optic cable wrapped 2 turns about a 7.5 millimeter diameter mandrel.
    Type: Grant
    Filed: May 10, 2013
    Date of Patent: November 15, 2016
    Assignee: CCS TECHNOLOGY, INC.
    Inventors: Cory Fritz Guenter, James Arthur Register, III, Todd Ray Rhyne
  • Patent number: 9488793
    Abstract: A combined low attenuation optical communication and power cable is provided. The cable includes a cable body having an inner surface defining a channel within the cable body. The cable includes an optical transmission element located within the channel and a copper electrical conducting element located within the channel. The cable includes a plurality of tensile strength yarn stands located within the channel.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: November 8, 2016
    Assignee: CORNING OPTICAL COMMUNICATIONS LLC
    Inventor: James Arthur Register, III