Patents by Inventor Arthur Yung-Chi Cheng

Arthur Yung-Chi Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11910525
    Abstract: Structures are described having thin flexible polymer substrates with electrically conductive films on each opposing surface while having high optical transmittance and good optical properties. The structures can have total thicknesses of no more than about 30 microns and good flexibility. Processing approaches are described that allow for the coating of the very thin structures by providing support through the coating process. The structures are demonstrated to have good durability under conditions designed to test accelerated wear for touch sensor use.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: February 20, 2024
    Assignee: C3 Nano, Inc.
    Inventors: Xiaofeng Chen, Byunghwan Kang, Jackie Chen, Yadong Cao, Vicki Luo, Arthur Yung-Chi Cheng, Andrew Hyeongjoo Moon, Xiqiang Yang, Ajay Virkar
  • Publication number: 20240043711
    Abstract: Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.
    Type: Application
    Filed: October 23, 2023
    Publication date: February 8, 2024
    Inventors: Ying-Syi Li, Xiqiang Yang, Yu Kambe, Xiaofeng Chen, Hua Gu, Steven Michael Lam, Melanie Maniko Inouye, Arthur Yung-Chi Cheng, Alex Da Zhang Tan, Christopher S. Scully, Ajay Virkar
  • Publication number: 20230416552
    Abstract: Room temperature processing has successfully resulted in highly conductive coatings formed from silver nanowires with a cellulose binder. The conductive coatings can be formed with silver salts to fuse the silver nanowires into a unitary fused metal nanostructured network. Even without added silver salts, low sheet resistance values can be obtained. Room temperature processing can be effective over a range of transmittance values from highly transparent to modestly transparent to translucent to opaque. The ability to form the transparent coatings opens the processing to a wide range of substrates that are not processible with higher process temperatures.
    Type: Application
    Filed: June 21, 2023
    Publication date: December 28, 2023
    Inventors: Xiqiang Yang, Arthur Yung-Chi Cheng, Michael Fang, Pei-Kang Liu, Ajay Virkar
  • Publication number: 20230399526
    Abstract: Metal salt based stabilizers are described that are effective to improve stability of sparse metal conductive films formed with metal nanowires, especially silver nanowires. Specifically, vanadium (+5) compositions can be effectively placed in coatings to provide desirable stabilization under accelerated wear testing conditions. Sparse metal conductive films can comprise fused metal nanostructured networks. Cobalt (+2) compounds can be incorporated as stabilization agents within nanowire inks to provide a high degree of stabilization without significantly interfering with the fusing process.
    Type: Application
    Filed: August 25, 2023
    Publication date: December 14, 2023
    Inventors: Xiqiang Yang, Yongxing Hu, Ajay Virkar, Arthur Yung-Chi Cheng, Faraz Asadi Manzour, Ying-Syi Li
  • Patent number: 11814531
    Abstract: Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.
    Type: Grant
    Filed: November 17, 2022
    Date of Patent: November 14, 2023
    Assignee: C3Nano Inc.
    Inventors: Ying-Syi Li, Xiqiang Yang, Yu Kambe, Xiaofeng Chen, Hua Gu, Steven Michael Lam, Melanie Maniko Inouye, Arthur Yung-Chi Cheng, Alex Da Zhang Tan, Christopher S. Scully, Ajay Virkar
  • Patent number: 11773275
    Abstract: Metal salt based stabilizers are described that are effective to improve stability of sparse metal conductive films formed with metal nanowires, especially silver nanowires. Specifically, vanadium (+5) compositions can be effectively placed in coatings to provide desirable stabilization under accelerated wear testing conditions. Sparse metal conductive films can comprise fused metal nanostructured networks. Cobalt (+2) compounds can be incorporated as stabilization agents within nanowire inks to provide a high degree of stabilization without significantly interfering with the fusing process.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: October 3, 2023
    Assignee: C3 Nano, Inc.
    Inventors: Xiqiang Yang, Yongxing Hu, Ajay Virkar, Arthur Yung-Chi Cheng, Faraz Azadi Manzour, Ying-Syi Li
  • Publication number: 20230080279
    Abstract: Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.
    Type: Application
    Filed: November 17, 2022
    Publication date: March 16, 2023
    Inventors: Ying-Syi Li, Xiqiang Yang, Yu Kambe, Xiaofeng Chen, Hua Gu, Steven Michael Lam, Melanie Maniko Inouye, Arthur Yung-Chi Cheng, Alex Da Zhang Tan, Christopher S. Scully, Ajay Virkar
  • Patent number: 11512215
    Abstract: Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: November 29, 2022
    Assignee: C3 Nano, Inc.
    Inventors: Ying-Syi Li, Xiqiang Yang, Yu Kambe, Xiaofeng Chen, Hua Gu, Steven Michael Lam, Melanie Maniko Inouye, Arthur Yung-Chi Cheng, Alex Da Zhang Tan, Christopher Steven Scully, Ajay Virkar
  • Publication number: 20210079246
    Abstract: Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.
    Type: Application
    Filed: November 19, 2020
    Publication date: March 18, 2021
    Inventors: Ying-Syi Li, Xiqiang Yang, Yu Kambe, Xiaofeng Chen, Hua Gu, Steven Michael Lam, Melanie Maniko Inouye, Arthur Yung-Chi Cheng, Alex Da Zhang Tan, Christopher Steven Scully, Ajay Virkar
  • Patent number: 10870772
    Abstract: Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: December 22, 2020
    Assignee: C3Nano Inc.
    Inventors: Ying-Syi Li, Xiqiang Yang, Yu Kambe, Xiaofeng Chen, Hua Gu, Steven Michael Lam, Melanie Maniko Inouye, Arthur Yung-Chi Cheng, Alex Da Zhang Tan, Christopher Steven Scully, Ajay Virkar
  • Publication number: 20200245457
    Abstract: Structures are described having thin flexible polymer substrates with electrically conductive films on each opposing surface while having high optical transmittance and good optical properties. The structures can have total thicknesses of no more than about 30 microns and good flexibility. Processing approaches are described that allow for the coating of the very thin structures by providing support through the coating process. The structures are demonstrated to have good durability under conditions designed to test accelerated wear for touch sensor use.
    Type: Application
    Filed: January 28, 2019
    Publication date: July 30, 2020
    Inventors: Xiaofeng Chen, Byunghwan Kang, Jackie Chen, Yadong Cao, Vicki Luo, Arthur Yung-Chi Cheng, Andrew Hyeongjoo Moon, Xiqiang Yang, Ajay Virkar
  • Publication number: 20190010347
    Abstract: Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.
    Type: Application
    Filed: September 11, 2018
    Publication date: January 10, 2019
    Inventors: Ying-Syi Li, Xiqiang Yang, Yu Kambe, Xiaofeng Chen, Hua Gu, Steven Michael LAm, Melanie Maniko Inouye, Arthur Yung-Chi Cheng, Alex Da Zhang Tan, Christopher Steven Scully, Ajay Virkar
  • Publication number: 20180105704
    Abstract: Metal salt based stabilizers are described that are effective to improve stability of sparse metal conductive films formed with metal nanowires, especially silver nanowires. Specifically, vanadium (+5) compositions can be effectively placed in coatings to provide desirable stabilization under accelerated wear testing conditions. Sparse metal conductive films can comprise fused metal nanostructured networks. Cobalt (+2) compounds can be incorporated as stabilization agents within nanowire inks to provide a high degree of stabilization without significantly interfering with the fusing process.
    Type: Application
    Filed: October 11, 2017
    Publication date: April 19, 2018
    Inventors: Xiqiang Yang, Yongxing Hu, Ajay Virkar, Arthur Yung-Chi Cheng, Faraz Azadi Manzour, Ying-Syi Li
  • Patent number: 9447301
    Abstract: Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: September 20, 2016
    Assignee: C3Nano Inc.
    Inventors: Ying-Syi Li, Xiqiang Yang, Yu Kambe, Xiaofeng Chen, Hua Gu, Steven Michael Lam, Melanie Mariko Inouye, Arthur Yung-Chi Cheng, Alex Da Zhang Tan, Christopher S. Scully, Ajay Virkar
  • Publication number: 20160122562
    Abstract: Transparent conductive films are described based on sparse metal conductive layers. Stabilization with respect to degradation of electrical conductivity over time is provided for the sparse metal conductive layers through the design of additional layers in the film. Specifically, the sparse metal conductive layer can be placed adjacent coatings with appropriate stabilization compositions as well as through the incorporation into the film of various additional protective layers.
    Type: Application
    Filed: October 29, 2014
    Publication date: May 5, 2016
    Inventors: Xiqiang Yang, Hua Gu, Yung-Yu Huang, Arthur Yung-Chi Cheng, Ajay Virkar, Ryomei Omote, Kazuhiro Nishikawa, Takeshi Nishimura, Yoshitaka Emoto
  • Publication number: 20160032127
    Abstract: Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.
    Type: Application
    Filed: September 9, 2015
    Publication date: February 4, 2016
    Inventors: Ying-Syi Li, Xiqiang Yang, Yu Kambe, Xiaofeng Chen, Hua Gu, Steven Michael Lam, Melanie Mariko Inouye, Arthur Yung-Chi Cheng, Alex Da Zhang Tan, Christopher S. Scully, Ajay Virkar
  • Patent number: 9183968
    Abstract: Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: November 10, 2015
    Assignee: C3Nano Inc.
    Inventors: Ying-Syi Li, Xiqiang Yang, Yu Kambe, Xiaofeng Chen, Hua Gu, Steven Michael Lam, Melanie Mariko Inouye, Arthur Yung-Chi Cheng, Alex Da Zhang Tan, Christopher S. Scully, Ajay Virkar
  • Patent number: 9150746
    Abstract: Fusing nanowire inks are described that can also comprise a hydrophilic polymer binder, such as a cellulose based binder. The fusing nanowire inks can be deposited onto a substrate surface and dried to drive the fusing process. Transparent conductive films can be formed with desirable properties.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: October 6, 2015
    Assignee: C3Nano Inc.
    Inventors: Ying-Syi Li, Xiqiang Yang, Yu Kambe, Xiaofeng Chen, Hua Gu, Steven Michael Lam, Melanie Mariko Inouye, Arthur Yung-Chi Cheng, Alex Da Zhang Tan, Christopher S. Scully, Ajay Virkar