Patents by Inventor Arto L. T. Maaninen

Arto L. T. Maaninen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7643717
    Abstract: Waveguides are disclosed (and other devices and materials including but not limited to hybrid organic-inorganic coatings, passivation materials, glob top materials, underfill materials, materials for IC and other applications, microlenses and any of a wide variety of optical devices) that benefit by being formed of a novel hybrid organic-inorganic material. In one embodiment of the invention, a method for making a waveguide includes: forming a lower cladding layer on a substrate; forming a core layer after the lower cladding layer; and forming an upper cladding layer after the core layer; wherein the lower cladding layer, core layer and/or upper cladding layer comprises a hybrid organic-inorganic material—that has many desirable properties relating to stability, hydrophobicity, roughness, optical absorbance, polarization dependent loss, among others.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: January 5, 2010
    Assignee: Silecs Oy
    Inventors: Juha T. Rantala, Arto L. T. Maaninen, T. Teemu T. Tormanen, Tiina J. Maaninen, Jarkko J. Pietikainen
  • Patent number: 7473650
    Abstract: A method for making an integrated circuit is disclosed as comprising depositing alternating regions of electrically conductive and dielectric materials on a substrate, wherein an area of dielectric material is formed by: a silane precursor having a fully or partially fluorinated first organic group comprising an unsaturated carbon-carbon double bond, the fully or partially fluorinated organic group bound to silicon in the silane precursor; forming from the silane precursor a hybrid organic-inorganic material having a molecular weight of at least 500 on a substrate; and increasing the molecular weight of the hybrid material by exposure to heat, electromagnetic radiation or electron beam so as to break the unsaturated carbon-carbon double bond and cross link via the fully or partially fluorinated organic group.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: January 6, 2009
    Assignee: Silecs Oy
    Inventors: Juha T. Rantala, Jason S. Reid, T. Teemu T. Tormanen, Nungavram S. Viswanathan, Arto L. T. Maaninen
  • Patent number: 7161019
    Abstract: A compound of the general formula R1MR4R5R6 is provided where R1 is a partially or fully fluorinated aryl, alkyl, alkenyl or alkynyl group, wherein M is selected from group 14 of the periodic table, wherein R4, R5 and R6 are independently an alkoxy group OR3 or a halogen group X—except, a) where R4, R5 and R6 are each ethoxy, M is Si and R1 is perfluorinated phenyl or perfluorinated vinyl; b) where R4 is ethoxy, R5 and R6 are chlorine, M is Si, and R1 is perfluorinated phenyl; or c) where R4, R5 and R6 are chlorine, M is Si, and R1 is perfluorinated phenyl, perfluorinated methyl or perfluorinated vinyl. This compound formed can be further reacted to attach an additional organic R group, and/or hydrolyzed, alone or with one or more similar compounds, to form a material having a molecular weight of from 500 to 10,000, which material can be deposited on various substrates as a coating or deposited and patterned for a waveguide or other optical device components.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: January 9, 2007
    Assignee: Silecs Oy
    Inventors: Juha A. Rantala, Arto L. T. Maaninen, Tina J. Maaninen, Jarkko J. Pietikainen
  • Patent number: 7144827
    Abstract: A method for making an integrated circuit is disclosed as comprising depositing alternating regions of electrically conductive and dielectric materials on a substrate, wherein an area of dielectric material is formed by: a silane precursor having a fully or partially fluorinated first organic group comprising an unsaturated carbon-carbon double bond, the fully or partially fluorinated organic group bound to silicon in the silane precursor; forming from the silane precursor a hybrid organic-inorganic material having a molecular weight of at least 500 on a substrate; and increasing the molecular weight of the hybrid material by exposure to heat, electromagnetic radiation or electron beam so as to break the unsaturated carbon-carbon double bond and cross link via the fully or partially fluorinated organic group.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: December 5, 2006
    Assignee: Silecs Oy
    Inventors: Juha T. Rantala, Jason S. Reid, T Teemu T. Tormanen, Nungavram S. Viswanathan, Arto L. T. Maaninen
  • Patent number: 7098346
    Abstract: A compound of the general formula: R1R2R4MR5, wherein R1, R2 and R4 are independently an aryl, alkyl, alkenyl or alkynyl group, wherein at least one of R1, R2 and R4 is fully or partially fluorinated, wherein M is selected from group 14 of the periodic table, and wherein R5 is either an alkoxy group, OR3, or a halogen group, X. This compound formed can be further reacted to attach an additional organic R group, and/or hydrolyzed with one or more similar compounds (preferably having one or two R groups bound to M), to form a material having a molecular weight of from 500 to 10,000, which material can be deposited on various substrates as a coating or deposited and patterned for a waveguide or other optical device components. Methods for making and using compounds of the general formula R1R2R4MR5 are also disclosed.
    Type: Grant
    Filed: December 8, 2004
    Date of Patent: August 29, 2006
    Assignee: Silecs Oy
    Inventors: Juha A. Rantala, Arto L. T. Maaninen, Tiina J. Maaninen, Jarkko J. Pietikainen
  • Patent number: 7062145
    Abstract: Waveguides are disclosed (and other devices and materials including but not limited to hydrophobic coatings, passivation materials, glob top materials, underfill materials, dielectric materials for IC and other applications, microlenses and any of a wide variety of optical devices) that benefit by a high hydrophobicity and high stability and, among other things. In one embodiment of the invention, a method for making a waveguide comprises: forming a lower cladding layer on a substrate; forming a core layer after the lower cladding layer; and forming an upper cladding layer after the core layer; wherein the lower cladding layer, core layer and/or upper cladding layer is hydrophobic and results, if exposed to water, in a water contact angle of 90 degrees or more.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: June 13, 2006
    Assignee: Silecs Oy
    Inventors: Juha T. Rantala, Arto L. T. Maaninen, T. Teemu T. Tormanen, Tiina J. Maaninen, Jarkko J. Pietikainen
  • Patent number: 6924384
    Abstract: A compound of the general formula R1R2MR4R5 is disclosed wherein R1 and R2 are independently an aryl, alkyl, alkenyl, epoxy or alkynyl group, wherein at least one of R1 and R2 is fully or partially fluorinated, wherein M is selected from group 14 of the periodic table, wherein R4 and R5 are independently an alkoxy group, OR3, or a halogen group, X, except where M is Si, R4 and R5 are both ethoxy groups or both chlorine groups, and R1 and R2 are perfluorinated groups. This compound formed can be further reacted to attach an additional organic R group, and/or hydrolyzed, alone or with one or more similar compounds, to form a material having a molecular weight of from 500 to 10,000, which material can be deposited on various substrates as a coating or deposited and patterned for a waveguide or other optical device components. Methods for making compounds of the general formula R1MR4R5R6 are also disclosed.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: August 2, 2005
    Assignee: Silecs Oy
    Inventors: Juha T. Rantala, Arto L. T. Maaninen, Tiina J. Maaninen, Jarkko J. Pietikainen
  • Patent number: 6831189
    Abstract: A method comprises reacting a compound of the general formula R14-mMOR3m wherein m is an integer from 2 to 4, R1 is selected from alkyl, alkenyl, aryl, alkynyl or epoxy, and wherein R1 is nonfluorinated, or fully or partially fluorinated; OR3 is alkoxy; and M is an element selected from group 14 of the periodic table; with a compound of the general formula R2M1 wherein R2 is selected from alkyl, alkenyl, aryl, alkynyl or epoxy, and wherein R2 is at least partially fluorinated; and M1 is an element from group I of the periodic table; so as to make a compound of the general formula R14-mMOR3m-1R2.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: December 14, 2004
    Assignee: Silecs Oy
    Inventors: Juha A. Rantala, Arto L. T. Maaninen, Tiina J. Maaninen, Jarkko J. Pietikainen
  • Patent number: 6803476
    Abstract: A method comprises reacting a compound of the general formula R14−mMOR3m wherein m is an integer from 2 to 4, OR3 is an alkoxy group, and M is an element selected from group 14 of the periodic table; with a compound of the general formula R2X2+Mg, wherein X2 is Br or I; where R1 and R2 are independently selected from alkyl, alkenyl, aryl, alkynyl, or epoxy, and wherein at least one of R1 and R2 is partially or fully fluorinated; so as to make a compound of the general formula R2R14−mMOR3m−1; followed by reacting R2R14−mMOR3m−1 with a halogen or halogen compound in order to replace one or more OR3 groups with a halogen group so as to form R2R14−mMOR3m−1−nXn, where X is a halogen and n is from 1 to 3 and m<n—except where R1 is fluorinated phenyl, M is Si and OR3 is ethoxy.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: October 12, 2004
    Assignee: Silecs Oy
    Inventors: Juha T. Rantala, Arto L. T. Maaninen, Tiina J. Maaninen, Jarkko J. Pietikainen
  • Publication number: 20040188713
    Abstract: A method for making an integrated circuit is disclosed as comprising depositing alternating regions of electrically conductive and dielectric materials on a substrate, wherein an area of dielectric material is formed by: a silane precursor having a fully or partially fluorinated first organic group comprising an unsaturated carbon-carbon double bond, the fully or partially fluorinated organic group bound to silicon in the silane precursor; forming from the silane precursor a hybrid organic-inorganic material having a molecular weight of at least 500 on a substrate; and increasing the molecular weight of the hybrid material by exposure to heat, electromagnetic radiation or electron beam so as to break the unsaturated carbon-carbon double bond and cross link via the fully or partially fluorinated organic group.
    Type: Application
    Filed: January 17, 2003
    Publication date: September 30, 2004
    Inventors: Juha T. Rantala, Jason S. Reid, T. Teemu T. Tormanen, Nungavram S. Viswanathan, Arto L.T. Maaninen
  • Publication number: 20040005131
    Abstract: Waveguides and other devices and materials (including but not limited to waveguides, microlenses, and other optical device components), both planer and freespace devices benefit by having a high transparency or low optical loss profile at particular wavelengths. A method for making a waveguide comprises forming a lower cladding layer on a substrate; forming a core layer after the lower cladding layer, and forming an upper cladding layer after the core layer; wherein the lower cladding layer, core layer and/or upper cladding layer comprises a material having an optical loss of 0.1 dB/cm or less at 1550 nm, 1310 nm, C Band and/or L Band. The material having low optical loss also has other desirable properties in the areas of ease and temperature of deposition, hydrophobicity, direct patternability (photosensitivity), stress, aspect ratio if patterned, and surface and sidewall roughness (if patterned), among other characteristics.
    Type: Application
    Filed: May 17, 2002
    Publication date: January 8, 2004
    Inventors: Juha T. Rantala, Arto L.T. Maaninen, T. Teemu T. Tormanen, Tiina J. Maaninen, Jarkko J. Pietikainen
  • Publication number: 20030235933
    Abstract: Waveguides are disclosed (and other devices and materials including but not limited to hybrid organic-inorganic coatings, passivation materials, glob top materials, underfill materials, materials for IC and other applications, microlenses and any of a wide variety of optical devices) that benefit by being formed of a novel hybrid organic-inorganic material. In one embodiment of the invention, a method for making a waveguide includes: forming a lower cladding layer on a substrate; forming a core layer after the lower cladding layer; and forming an upper cladding layer after the core layer; wherein the lower cladding layer, core layer and/or upper cladding layer comprises a hybrid organic-inorganic material—that has many desirable properties relating to stability, hydrophobicity, roughness, optical absorbance, polarization dependent loss, among others.
    Type: Application
    Filed: May 17, 2002
    Publication date: December 25, 2003
    Inventors: Juha T. Rantala, Arto L. T. Maaninen, T. Teemu T. Tormanen, Tiina J. Maaninen, Jarkko J. Pietikainen
  • Publication number: 20030231851
    Abstract: Waveguides are disclosed (and other devices and materials including but not limited to hydrophobic coatings, passivation materials, glob top materials, underfill materials, dielectric materials for IC and other applications, microlenses and any of a wide variety of optical devices) that benefit by a high hydrophobicity and high stability and, among other things. In one embodiment of the invention, a method for making a waveguide comprises: forming a lower cladding layer on a substrate; forming a core layer after the lower cladding layer; and forming an upper cladding layer after the core layer; wherein the lower cladding layer, core layer and/or upper cladding layer is hydrophobic and results, if exposed to water, in a water contact angle of 90 degrees or more.
    Type: Application
    Filed: May 17, 2002
    Publication date: December 18, 2003
    Inventors: Juha T. Rantala, Arto L. T. Maaninen, T. Teemu T. Tormanen, Tiina J. Maaninen, Jarkko J. Pietikainen
  • Publication number: 20030176718
    Abstract: A compound of the general formula: R1R2R4MR5, wherein R1, R2 and R4 are independently an aryl, alkyl, alkenyl or alkynyl group, wherein at least one of R1, R2 and R4 is fully or partially fluorinated, wherein M is selected from group 14 of the periodic table, and wherein R5 is either an alkoxy group, OR3, or a halogen group, X. This compound formed can be further reacted to attach an additional organic R group, and/or hydrolyzed with one or more similar compounds (preferably having one or two R groups bound to M), to form a material having a molecular weight of from 500 to 10,000, which material can be deposited on various substrates as a coating or deposited and patterned for a waveguide or other optical device components. Methods for making and using compounds of the general formula R1R2R4MR5 are also disclosed.
    Type: Application
    Filed: January 8, 2002
    Publication date: September 18, 2003
    Inventors: Juha T. Rantala, Arto L.T. Maaninen, Tiina J. Maaninen, Jarkko J. Pietikainen
  • Publication number: 20030171607
    Abstract: A compound of the general formula R1MR4R5R6 is provided where R1 is a partially or fully fluorinated aryl, alkyl, alkenyl or alkynyl group, wherein M is selected from group 14 of the periodic table, wherein R4, R5 and R6 are independently an alkoxy group OR3 or a halogen group X—except, a) where R4, R5 and R6 are each ethoxy, M is Si and R1 is perfluorinated phenyl or perfluorinated vinyl; b) where R4 is ethoxy, R5 and R6 are chlorine, M is Si, and R1 is perfluorinated phenyl; or c) where R4, R5 and R6 are chlorine, M is Si, and R1 is perfluorinated phenyl, perfluorinated methyl or perfluorinated vinyl. This compound formed can be further reacted to attach an additional organic R group, and/or hydrolyzed, alone or with one or more similar compounds, to form a material having a molecular weight of from 500 to 10,000, which material can be deposited on various substrates as a coating or deposited and patterned for a waveguide or other optical device components.
    Type: Application
    Filed: January 8, 2002
    Publication date: September 11, 2003
    Inventors: Juha T. Rantala, Arto L. T. Maaninen, Tiina J. Maaninen, Jarkko J. Pietikainen
  • Publication number: 20030166953
    Abstract: A method comprises reacting a compound of the general formula R14-mMOR3m wherein m is an integer from 2 to 4, OR3 is an alkoxy group, and M is an element selected from group 14 of the periodic table; with a compound of the general formula R2X2+Mg, wherein X2 is Br or I; where R1 and R2 are independently selected from alkyl, alkenyl, aryl, alkynyl, or epoxy, and wherein at least one of R1 and R2 is partially or fully fluorinated; so as to make a compound of the general formula R2R14-mMOR3m-1; followed by reacting R2R14-mMOR3m-1 with a halogen or halogen compound in order to replace one or more OR3 groups with a halogen group so as to form R2R14-mMOR3m-1-nXn, where X is a halogen and n is from 1 to 3 and m<n—except where R1 is fluorinated phenyl, M is Si and OR3 is ethoxy.
    Type: Application
    Filed: January 8, 2002
    Publication date: September 4, 2003
    Inventors: Juha T. Rantala, Arto L.T. Maaninen, Tina J. Maaninen, Jarkko J. Pietikainen
  • Publication number: 20030166954
    Abstract: A method comprises reacting a compound of the general formula R14-mMOR3m wherein m is an integer from 2 to 4, R1 is selected from alkyl, alkenyl, aryl, alkynyl or epoxy, and wherein R1 is nonfluorinated, or fully or partially fluorinated; OR3 is alkoxy; and M is an element selected from group 14 of the periodic table; with a compound of the general formula R2M1 wherein R2 is selected from alkyl, alkenyl, aryl, alkynyl or epoxy, and wherein R2 is at least partially fluorinated; and M1 is an element from group I of the periodic table; so as to make a compound of the general formula R14-mMOR3m-1R2.
    Type: Application
    Filed: January 8, 2002
    Publication date: September 4, 2003
    Inventors: Juha T. Rantala, Arto L. T. Maaninen, Tiina J. Maaninen, Jarkko J. Pietikainen
  • Publication number: 20030162985
    Abstract: A compound of the general formula R1R2MR4R5 is disclosed wherein R1 and R2 are independently an aryl, alkyl, alkenyl, epoxy or alkynyl group, wherein at least one of R1 and R2 is fully or partially fluorinated, wherein M is selected from group 14 of the periodic table, wherein R4 and R5 are independently an alkoxy group, OR3, or a halogen group, X, except where M is Si, R4 and R5 are both ethoxy groups or both chlorine groups, and R1 and R2 are perfluorinated groups. This compound formed can be further reacted to attach an additional organic R group, and/or hydrolyzed, alone or with one or more similar compounds, to form a material having a molecular weight of from 500 to 10,000, which material can be deposited on various substrates as a coating or deposited and patterned for a waveguide or other optical device components. Methods for making compounds of the general formula R1MR4R5R6 are also disclosed.
    Type: Application
    Filed: January 8, 2002
    Publication date: August 28, 2003
    Inventors: Juha T. Rantala, Arto L.T. Maaninen, Tiina J. Maaninen, Jarkko J. Pietikainen