Patents by Inventor Arturo Garcia

Arturo Garcia has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190298922
    Abstract: Methods and apparatus, including computer program products, are provided for processing analyte data. In some example implementations, a method may include generating glucose sensor data indicative of a host's glucose concentration using a glucose sensor; calculating a glycemic variability index (GVI) value based on the glucose sensor data; and providing output to a user responsive to the calculated glycemic variability index value. The GVI may be a ratio of a length of a line representative of the sensor data and an ideal length of the line. Related systems, methods, and articles of manufacture are also disclosed.
    Type: Application
    Filed: June 18, 2019
    Publication date: October 3, 2019
    Inventors: Naresh C. Bhavaraju, Arturo Garcia, Phil Mayou, Thomas A. Peyser, Apurv Ullas Kamath, Aarthi Mahalingam, Kevin Sayer, Thomas Hall, Michael Robert Mensinger, Hari Hampapuram, David Price, Jorge Valdes, Murrad Kazalbash
  • Publication number: 20190298259
    Abstract: The present embodiments harness a wide variety of capabilities of modern smartphones, and combine these capabilities with information from a continuous glucose monitor to provide diabetics and related people with more information than the continuous glucose monitor can provide by itself. The increased information provides the diabetic with an increased likelihood of good diabetes management for better health.
    Type: Application
    Filed: June 13, 2019
    Publication date: October 3, 2019
    Inventors: Michael Robert Mensinger, Naresh C. Bhavaraju, Leif Bowman, Alexandra Lynn Carlton, David DeRenzy, Arturo Garcia, Indrawati Gauba, Ashley Hall, Thomas Hall, Hari Hampapuram, Murrad Kazalbash, Aarthi Mahalingam, Jack Pryor, Anna Leigh Davis, Eli Reihman, Kenneth San Vicente, Peter C. Simpson, Alexander Steele, Jorge Valdes, Michael J. Estes, Eric Cohen
  • Patent number: 10406287
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: September 10, 2019
    Assignee: DexCom, Inc.
    Inventors: Anna Leigh Davis, Scott M. Belliveau, Naresh C. Bhavaraju, Leif N. Bowman, Rita M. Castillo, Alexandra Elena Constantin, Rian Draeger, Laura J. Dunn, Gary Brian Gable, Arturo Garcia, Thomas Hall, Hari Hampapuram, Christopher Robert Hannemann, Anna Claire Harley-Trochimczyk, Nathaniel David Heintzman, Andrea J. Jackson, Lauren Hruby Jepson, Apurv Ullas Kamath, Katherine Yerre Koehler, Aditya Sagar Mandapaka, Samuel Jere Marsh, Gary A. Morris, Subrai Girish Pai, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Ashley Anne Rindfleisch, Sofie Wells Schunk, Peter C. Simpson, Daniel Smith, Stephen J. Vanslyke, Matthew T. Vogel, Tomas C. Walker, Benjamin Elrod West, Atiim Joseph Wiley
  • Publication number: 20190261905
    Abstract: Systems and methods for processing sensor data and calibration of the sensors are provided. In some embodiments, the method for calibrating at least one sensor data point from an analyte sensor comprises receiving a priori calibration distribution information; receiving one or more real-time inputs that may influence calibration of the analyte sensor; forming a posteriori calibration distribution information based on the one or more real-time inputs; and converting, in real-time, at least one sensor data point calibrated sensor data based on the a posteriori calibration distribution information.
    Type: Application
    Filed: May 14, 2019
    Publication date: August 29, 2019
    Applicant: DexCom, Inc.
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Lucas Bohnett, Arturo Garcia, Apurv Ullas Kamath, Jack Pryor
  • Publication number: 20190246914
    Abstract: Systems and methods are provided to provide guidance to a user regarding management of a physiologic condition such as diabetes. The determination may be based upon a patient glucose concentration level. The glucose concentration level may be provided to a stored model to determine a state. The guidance may be determined based at least in part on the determined state.
    Type: Application
    Filed: February 6, 2019
    Publication date: August 15, 2019
    Inventors: Alexandra Elena Constantin, Scott M. Belliveau, Naresh C. Bhavaraju, Jennifer Blackwell, Eric Cohen, Basab Dattaray, Anna Leigh Davis, Rian Draeger, Arturo Garcia, John Michael Gray, Hari Hampapuram, Nathaniel David Heintzmann, Lauren Hruby Jepson, Matthew Lawrence Johnson, Apurv Ullas Kamath, Katherine Yerre Koehler, Phil Mayou, Patrick Wile McBride, Michael Robert Mensinger, Sumitaka Mikami, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Peter C. Simpson, Tomas C. Walker, Daniel Justin Wiedeback, Subrai Girish Pai, Matthew T. Vogel
  • Publication number: 20190251456
    Abstract: Systems and methods are provided to determine a time to provide guidance to a user regarding management of a physiologic condition such as diabetes. The determination may be based upon a model or pattern. The time to deliver guidance may be calculated to be useful to a user in the management of a glucose concentration level.
    Type: Application
    Filed: February 6, 2019
    Publication date: August 15, 2019
    Inventors: Alexandra Elena Constantin, Scott M. Belliveau, Naresh C. Bhavaraju, Jennifer Blackwell, Eric Cohen, Basab Dattaray, Anna Leigh Davis, Rian Draeger, Arturo Garcia, John Michael Gray, Hari Hampapuram, Nathaniel David Heintzmann, Lauren Hruby Jepson, Matthew Lawrence Johnson, Apurv Ullas Kamath, Katherine Yerre Koehler, Phil Mayou, Patrick Wile McBride, Michael Robert Mensinger, Sumitaka Mikami, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Peter C. Simpson, Tomas C. Walker, Daniel Justin Wiedeback, Subrai Girish Pai, Matthew T. Vogel
  • Publication number: 20190246973
    Abstract: Systems and methods are provided to provide guidance to a user regarding management of a physiologic condition such as diabetes. The determination may be based upon a patient glucose concentration level. The glucose concentration level may be provided to a stored model to determine a state. The guidance may be determined based at least in part on the determined state.
    Type: Application
    Filed: February 6, 2019
    Publication date: August 15, 2019
    Inventors: Alexandra Elena Constantin, Scott M. Belliveau, Naresh C. Bhavaraju, Jennifer Blackwell, Eric Cohen, Basab Dattaray, Anna Leigh Davis, Rian Draeger, Arturo Garcia, John Michael Gray, Hari Hampapuram, Nathaniel David Heintzmann, Lauren Hruby Jepson, Matthew Lawrence Johnson, Apurv Ullas Kamath, Katherine Yerre Koehler, Phil Mayou, Patrick Wile McBride, Michael Robert Mensinger, Sumitaka Mikami, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Peter C. Simpson, Tomas C. Walker, Daniel Justin Wiedeback, Subrai Girish Pai, Matthew T. Vogel
  • Publication number: 20190252079
    Abstract: Systems and methods are provided to provide guidance to a user regarding management of a physiologic condition such as diabetes. The determination may be based upon a patient glucose concentration data sensed by a glucose concentration sensor. A host state change associated with the host glucose concentration data may be determined. A guidance message based at least in part on the host state change may also be determined. The guidance message may be delivered through a user interface.
    Type: Application
    Filed: February 6, 2019
    Publication date: August 15, 2019
    Inventors: Alexandra Elena Constantin, Scott M. Belliveau, Naresh C. Bhavaraju, Jennifer Blackwell, Eric Cohen, Basab Dattaray, Anna Leigh Davis, Rian Draeger, Arturo Garcia, John Michael Gray, Hari Hampapuram, Nathaniel David Heintzmann, Lauren Hruby Jepson, Matthew Lawrence Johnson, Apurv Ullas Kamath, Katherine Yerre Koehler, Phil Mayou, Patrick Wile McBride, Michael Robert Mensinger, Sumitaka Mikami, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Peter C. Simpson, Tomas C. Walker, Daniel Justin Wiedeback
  • Patent number: 10369283
    Abstract: Methods and apparatus, including computer program products, are provided for processing analyte data. In some example implementations, a method may include generating glucose sensor data indicative of a host's glucose concentration using a glucose sensor; calculating a glycemic variability index (GVI) value based on the glucose sensor data; and providing output to a user responsive to the calculated glycemic variability index value. The GVI may be a ratio of a length of a line representative of the sensor data and an ideal length of the line. Related systems, methods, and articles of manufacture are also disclosed.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: August 6, 2019
    Assignee: DexCom, Inc.
    Inventors: Naresh C. Bhavaraju, Arturo Garcia, Phil Mayou, Thomas A. Peyser, Apurv Ullas Kamath, Aarthi Mahalingam, Kevin Sayer, Thomas Hall, Michael Robert Mensinger, Hari Hampapuram, David Price, Jorge Valdes, Murrad Kazalbash
  • Publication number: 20190208791
    Abstract: To address the problems inherent in creating very thin sheets of dough in a sheeting machine at high speed and with efficient recycling and re-sheeting of the re-work cut out from the sheet, a new sheeting machine with a new front roller is provided, wherein the roller includes non-stick and non-release areas and a plurality of grooves in the non-release area.
    Type: Application
    Filed: March 18, 2019
    Publication date: July 11, 2019
    Inventors: Felipe A. RUBIO LAMAS, Arturo GARCIA SOLIS, Rodrigo LOBEIRA MASSU
  • Patent number: 10335075
    Abstract: Systems and methods for processing sensor data and calibration of the sensors are provided. In some embodiments, the method for calibrating at least one sensor data point from an analyte sensor comprises receiving a priori calibration distribution information; receiving one or more real-time inputs that may influence calibration of the analyte sensor; forming a posteriori calibration distribution information based on the one or more real-time inputs; and converting, in real-time, at least one sensor data point calibrated sensor data based on the a posteriori calibration distribution information.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 2, 2019
    Assignee: DexCom, Inc.
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Lucas Bohnett, Arturo Garcia, Apurv Ullas Kamath, Jack Pryor
  • Patent number: 10328204
    Abstract: Systems and methods are disclosed that provide smart alerts to users, e.g., alerts to users about diabetic states that are only provided when it makes sense to do so, e.g., when the system can predict or estimate that the user is not already cognitively aware of their current condition, e.g., particularly where the current condition is a diabetic state warranting attention. In this way, the alert or alarm is personalized and made particularly effective for that user. Such systems and methods still alert the user when action is necessary, e.g., a bolus or temporary basal rate change, or provide a response to a missed bolus or a need for correction, but do not alert when action is unnecessary, e.g., if the user is already estimated or predicted to be cognitively aware of the diabetic state warranting attention, or if corrective action was already taken.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: June 25, 2019
    Assignee: DexCom, Inc.
    Inventors: Anna Leigh Davis, Arturo Garcia, Thomas Hall, Hari Hampapuram, Christopher Robert Hannemann, Anna Claire Harley-Trochimczyk, Nathaniel David Heintzman, Andrea J. Jackson, Lauren Hruby Jepson, Apurv Ullas Kamath, Katherine Yerre Koehler, Scott M. Belliveau, Aditya Sagar Mandapaka, Samuel Jere Marsh, Gary A. Morris, Subrai Girish Pai, Andrew Attila Pal, Nicholas Polytaridis, Philip Thomas Pupa, Eli Reihman, Ashley Anne Rindfleisch, Sofie Wells Schunk, Naresh C. Bhavaraju, Peter C. Simpson, Daniel Smith, Stephen J. Vanslyke, Matthew T. Vogel, Tomas C. Walker, Benjamin Elrod West, Atiim Joseph Wiley, Leif N. Bowman, Rita M. Castillo, Alexandra Elena Constantin, Rian Draeger, Laura J. Dunn, Gary Brian Gable
  • Patent number: 10316625
    Abstract: Methods, computer-readable media, and computing systems for maintaining a well production model. The method includes receiving an update to a parameter of the model of a well, and updating the model based on the update. The method also includes splitting the model into at least two submodels after updating the model, and running the submodels to obtain results. The method further includes determining that the results obtained by running the submodels do not match, and in response to determining that the results obtained by running the submodels do not match, calibrating the model based on the update.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: June 11, 2019
    Assignee: Schlumberger Technology Corporation
    Inventors: Carlos Arturo Garcia Zurita, Franz Fuehrer, Riku Vilkki, Henry David Torres Rincon
  • Publication number: 20190150803
    Abstract: Systems and methods disclosed here provide ways to discriminate fault types encountered in analyte sensors and systems and further provide ways to process such discriminated faults responsively based on sensor data, clinical context information, and other data about the patient or patient's environment. The systems and methods thus employ clinical context in detecting and/or responding to errors or faults associated with an analyte sensor system, and discriminating the type of fault, and its root cause, particularly as fault dynamics can appear similar to the dynamics of physiological systems, emphasizing the importance of discriminating the fault and providing appropriate responsive processing. Thus, the disclosed systems and methods consider the context of the patient's health condition or state in determining how to respond to the fault.
    Type: Application
    Filed: January 29, 2019
    Publication date: May 23, 2019
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Sebastian Böhm, Leif N. Bowman, Michael J. Estes, Arturo Garcia, Apurv Ullas Kamath, Andrew Attila Pal, Thomas A. Peyser, Anna Leigh Davis, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Dmytro Sokolovsky
  • Publication number: 20190126648
    Abstract: A droplet deposition head including a datum surface arrangement for alignment of the head relative to an external mounting component in either a vertical mounting mode in which the head is held against a vertical mounting plate or a horizontal mounting mode where the head is held against a horizontal mounting plate. The datum surface arrangement comprising at least seven datum surfaces (x1; y1, y2, y3; z1, z2, z3) provided on the head, wherein five of the seven datum surfaces are provided for alignment in both vertical and horizontal mounting modes, and wherein a sixth datum surface (z3) is provided for alignment exclusively in said horizontal mounting mode and a seventh datum surface (y3) is provided for alignment exclusively in said vertical mounting mode.
    Type: Application
    Filed: April 13, 2016
    Publication date: May 2, 2019
    Inventors: Ulrik Manfred NAUNTON, Stephen Mark JEAPES, Richard Hugh LEWIS, Jesus GARCIA MAZA, Arturo Garcia GOMEZ, Robert John Charles DUNN
  • Patent number: 10238322
    Abstract: Systems and methods disclosed here provide ways to discriminate fault types encountered in analyte sensors and systems and further provide ways to process such discriminated faults responsively based on sensor data, clinical context information, and other data about the patient or patient's environment. The systems and methods thus employ clinical context in detecting and/or responding to errors or faults associated with an analyte sensor system, and discriminating the type of fault, and its root cause, particularly as fault dynamics can appear similar to the dynamics of physiological systems, emphasizing the importance of discriminating the fault and providing appropriate responsive processing. Thus, the disclosed systems and methods consider the context of the patient's health condition or state in determining how to respond to the fault.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: March 26, 2019
    Assignee: DexCom, Inc.
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Sebastian Böhm, Leif N. Bowman, Michael J. Estes, Arturo Garcia, Apurv Ullas Kamath, Andrew Attila Pal, Thomas A. Peyser, Anna Leigh Rack-Gomer, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Dmytro Sokolovsky
  • Patent number: 10238323
    Abstract: Systems and methods disclosed here provide ways to discriminate fault types encountered in analyte sensors and systems and further provide ways to process such discriminated faults responsively based on sensor data, clinical context information, and other data about the patient or patient's environment. The systems and methods thus employ clinical context in detecting and/or responding to errors or faults associated with an analyte sensor system, and discriminating the type of fault, and its root cause, particularly as fault dynamics can appear similar to the dynamics of physiological systems, emphasizing the importance of discriminating the fault and providing appropriate responsive processing. Thus, the disclosed systems and methods consider the context of the patient's health condition or state in determining how to respond to the fault.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: March 26, 2019
    Assignee: DexCom, Inc.
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Sebastian Böhm, Leif N. Bowman, Michael J. Estes, Arturo Garcia, Apurv Ullas Kamath, Andrew Attila Pal, Thomas A. Peyser, Anna Leigh Rack-Gomer, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Dmytro Sokolovsky
  • Patent number: 10238324
    Abstract: Systems and methods disclosed here provide ways to discriminate fault types encountered in analyte sensors and systems and further provide ways to process such discriminated faults responsively based on sensor data, clinical context information, and other data about the patient or patient's environment. The systems and methods thus employ clinical context in detecting and/or responding to errors or faults associated with an analyte sensor system, and discriminating the type of fault, and its root cause, particularly as fault dynamics can appear similar to the dynamics of physiological systems, emphasizing the importance of discriminating the fault and providing appropriate responsive processing. Thus, the disclosed systems and methods consider the context of the patient's health condition or state in determining how to respond to the fault.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: March 26, 2019
    Assignee: DexCom, Inc.
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Sebastian Böhm, Leif N. Bowman, Michael J. Estes, Arturo Garcia, Apurv Ullas Kamath, Andrew Attila Pal, Thomas A. Peyser, Anna Leigh Rack-Gomer, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Dmytro Sokolovsky
  • Patent number: 10231462
    Abstract: To address the problems inherent in creating very thin sheets of dough in a sheeting machine at high speed and with efficient recycling and re-sheeting of the re-work cut out from the sheet, a new sheeting machine with a new front roller is provided, wherein the roller includes non-stick and non-release areas and a plurality of grooves in the non-release area.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: March 19, 2019
    Assignee: Gruma S.A.B. de C.V.
    Inventors: Felipe A. Rubio Lamas, Arturo Garcia Solis, Rodrigo Lobeira Massu
  • Patent number: 10231659
    Abstract: Systems and methods disclosed here provide ways to discriminate fault types encountered in analyte sensors and systems and further provide ways to process such discriminated faults responsively based on sensor data, clinical context information, and other data about the patient or patient's environment. The systems and methods thus employ clinical context in detecting and/or responding to errors or faults associated with an analyte sensor system, and discriminating the type of fault, and its root cause, particularly as fault dynamics can appear similar to the dynamics of physiological systems, emphasizing the importance of discriminating the fault and providing appropriate responsive processing. Thus, the disclosed systems and methods consider the context of the patient's health condition or state in determining how to respond to the fault.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: March 19, 2019
    Assignee: DexCom, Inc.
    Inventors: Stephen J. Vanslyke, Naresh C. Bhavaraju, Sebastian Böhm, Leif N. Bowman, Michael J. Estes, Arturo Garcia, Apurv Ullas Kamath, Andrew Attila Pal, Thomas A. Peyser, Anna Leigh Rack-Gomer, Daiting Rong, Disha B. Sheth, Peter C. Simpson, Dmytro Sokolovsky