Patents by Inventor Arun Arora

Arun Arora has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230272291
    Abstract: Provided is a novel catalyst for use in the second stage of a two-stage hydrocracking process. The present process comprises hydrocracking a hydrocarbon feed in a first stage. The catalyst in the first stage is a conventional hydrocracking catalyst. The product from the first stage can then be transferred to a second hydrocracking stage. The catalyst used in the second stage of the present hydrocracking process comprises a base impregnated with metals from Group 6 and Groups 8 through 10 of the Periodic Table, and an organic acid. The base of the catalyst used in the present second hydrocracking stage comprises alumina, an amorphous silica-alumina (ASA) material, and a USY zeolite. Improved naphtha production is achieved.
    Type: Application
    Filed: July 23, 2021
    Publication date: August 31, 2023
    Inventors: Jifei JIA, Bi-Zeng ZHAN, Wai Seung William LOUIE, Arun ARORA, Jay PAREKH
  • Patent number: 11608442
    Abstract: The present disclosure envisages a coating composition. The coating composition comprises a polymeric emulsion, silane functionalized fibres and a fluid medium. The silane functionalized fibres are present in an amount in the range of 0.05 wt. % to 10 wt. % of the coating composition. The polymeric emulsion is present in an amount in the range of 20 wt. % to 60 wt. % of the coating composition. The fluid medium is present in an amount in the range of 5 wt. % to 40 wt. % of the coating composition. The silane functionalized fibre comprises at least one polymer bonded to at least one silane group. The coating composition of the present disclosure exhibit improved properties such as better coverage when applied on a surface, mechanical properties, stain resistance properties and the like, when compared to coating composition without fibres.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: March 21, 2023
    Assignee: Reliance Industries Limited
    Inventors: Ramanand Namdeo Jagtap, Arun Arora, Gaurav Gupta, Nilesh Shankar Revagade, Nivedita Dnyaneshwar Nandanwar, Prashil Dharmesh Desai
  • Patent number: 11566190
    Abstract: Integrated processes and systems for the production of distillate hydrocarbons and coke. The process may include feeding a hydrocarbon feedstock, comprising a residuum hydrocarbon fraction, to a residue hydrocracking reactor system to convert hydrocarbons therein, producing a hydrocracked effluent. The hydrocracked effluent may then be fed to a separation system, separating the hydrocracked effluent into one or more distillate hydrocarbon fractions and a vacuum residue fraction. The vacuum residue fraction may be fed to a coker system, converting the vacuum residue fraction into a coke product and a coker vapor effluent, recovering the coke product, and feeding the coker vapor effluent to the separation system. The one or more distillate hydrocarbon fractions are hydroprocessed to produce a hydroprocessed effluent, and the hydroprocessed effluent is separated into product distillate hydrocarbon fractions.
    Type: Grant
    Filed: July 26, 2021
    Date of Patent: January 31, 2023
    Assignee: LUMMUS TECHNOLOGY LLC
    Inventors: Suresh B. Koduru, Arun Arora
  • Publication number: 20220025283
    Abstract: Integrated processes and systems for the production of distillate hydrocarbons and coke. The process may include feeding a hydrocarbon feedstock, comprising a residuum hydrocarbon fraction, to a residue hydrocracking reactor system to convert hydrocarbons therein, producing a hydrocracked effluent. The hydrocracked effluent may then be fed to a separation system, separating the hydrocracked effluent into one or more distillate hydrocarbon fractions and a vacuum residue fraction. The vacuum residue fraction may be fed to a coker system, converting the vacuum residue fraction into a coke product and a coker vapor effluent, recovering the coke product, and feeding the coker vapor effluent to the separation system. The one or more distillate hydrocarbon fractions are hydroprocessed to produce a hydroprocessed effluent, and the hydroprocessed effluent is separated into product distillate hydrocarbon fractions.
    Type: Application
    Filed: July 26, 2021
    Publication date: January 27, 2022
    Applicant: LUMMUS TECHNOLOGY LLC
    Inventors: Suresh B. Koduru, Arun Arora
  • Patent number: 10894922
    Abstract: A process for upgrading vacuum residuum and vacuum gas oil hydrocarbons is disclosed. The process may include: contacting a heavy distillate hydrocarbon fraction and hydrogen with a zeolite selective hydrocracking catalyst in a first ebullated bed hydrocracking reaction zone to convert at least a portion of the vacuum gas oil to lighter hydrocarbons. Contacting a residuum hydrocarbon fraction and hydrogen with a non-zeolite base metal hydroconversion catalyst in a second ebullated bed hydroconversion reaction zone may produce a vapor stream containing unconverted hydrogen, acid gases and volatilized hydrocarbons which may be fed along with the vacuum gas oil in the first ebullated bed hydrocracking zone.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: January 19, 2021
    Assignee: Lummus Technology Inc.
    Inventors: Arun Arora, Marvin I. Greene
  • Publication number: 20200362253
    Abstract: Processes and systems for upgrading hydrocracker unconverted heavy oil are provided. The invention is useful in upgrading unconverted heavy oil such as resid derived from hydrocracking processes and may be used to upgrade such resids to form fuel oils such as low sulfur fuel oil for marine use. A combination of solutions is applied in the invention including applying a separation process for unconverted heavy oil comprising hydrocracker resid, combining an aromatic feed with the unconverted heavy oil, followed by subjecting the unconverted heavy oil to a hydrotreating process.
    Type: Application
    Filed: November 21, 2018
    Publication date: November 19, 2020
    Inventors: Goutam Biswas, Arun Arora, Bruce Edward Reynolds, Julie Elaine Chabot, Michael McMullin, ShuWu Yang
  • Publication number: 20200239703
    Abstract: The present disclosure envisages a coating composition. The coating composition comprises a polymeric emulsion, silane functionalized fibres and a fluid medium. The silane functionalized fibres are present in an amount in the range of 0.05 wt. % to 10 wt. % of the coating composition. The polymeric emulsion is present in an amount in the range of 20 wt. % to 60 wt. % of the coating composition. The fluid medium is present in an amount in the range of 5 wt. % to 40 wt. % of the coating composition. The silane functionalized fibre comprises at least one polymer bonded to at least one silane group. The coating composition of the present disclosure exhibit improved properties such as better coverage when applied on a surface, mechanical properties, stain resistance properties and the like, when compared to coating composition without fibres.
    Type: Application
    Filed: October 15, 2018
    Publication date: July 30, 2020
    Applicant: Reliance Industries Limited
    Inventors: Ramanand Namdeo Jagtap, Arun Arora, Gaurav Gupta, Nilesh Shankar Revagade, Nivedita Dnyaneshwar Nandanwar, Prashil Dharmesh Desai
  • Patent number: 10552866
    Abstract: The disclosure includes technology for providing custom content for display. In an example embodiment, a computer-implemented method includes storing unique customer types in a non-transitory computer storage device; storing in the computer storage device custom contents in association with one or more of the different customer types; receiving at a user device or a server coupled to the user device interaction data from the user device of a user describing an interaction by the user with a site presented for display to the user on the user device; determining by the user device or the server a customer type for the user; querying by the user device or the server the custom contents stored on the computer storage device for a custom content matching the customer type and associated with the interaction data; and presenting the custom content to the user via the display of the user device.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: February 4, 2020
    Assignee: Staples, Inc.
    Inventors: Prakash Muppirala, Faisal Masud, Arun Arora, Pratabkumar Vemana, Melanie Oxley-Wilson, Debra Arora
  • Patent number: 10385283
    Abstract: Embodiments herein relate to a process flow scheme for the processing of gas oils and especially reactive gas oils produced by thermal cracking of residua using a split flow concept. The split flow concepts disclosed allow optimization of the hydrocracking reactor severities and thereby take advantage of the different reactivities of thermally cracked gas oils versus those of virgin gas oils. This results in a lower cost facility for producing base oils as well as diesel, kerosene and gasoline fuels while achieving high conversions and high catalyst lives.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: August 20, 2019
    Assignee: Lummus Technology Inc.
    Inventors: Arun Arora, Ujjal K. Mukherjee, Wai Seung Louie, Marvin I. Greene
  • Publication number: 20190249095
    Abstract: A process for upgrading vacuum residuum and vacuum gas oil hydrocarbons is disclosed. The process may include: contacting a heavy distillate hydrocarbon fraction and hydrogen with a zeolite selective hydrocracking catalyst in a first ebullated bed hydrocracking reaction zone to convert at least a portion of the vacuum gas oil to lighter hydrocarbons. Contacting a residuum hydrocarbon fraction and hydrogen with a non-zeolite base metal hydroconversion catalyst in a second ebullated bed hydroconversion reaction zone may produce a vapor stream containing unconverted hydrogen, acid gases and volatilized hydrocarbons which may be fed along with the vacuum gas oil in the first ebullated bed hydrocracking zone.
    Type: Application
    Filed: January 31, 2019
    Publication date: August 15, 2019
    Applicant: Lummus Technology Inc.
    Inventors: Arun Arora, Marvin I. Greene
  • Patent number: 10208261
    Abstract: A process for upgrading vacuum residuum and vacuum gas oil hydrocarbons is disclosed. The process may include: contacting a heavy distillate hydrocarbon fraction and hydrogen with a zeolite selective hydrocracking catalyst in a first ebullated bed hydrocracking reaction zone to convert at least a portion of the vacuum gas oil to lighter hydrocarbons. Contacting a residuum hydrocarbon fraction and hydrogen with a non-zeolite base metal hydroconversion catalyst in a second ebullated bed hydroconversion reaction zone may produce a vapor stream containing unconverted hydrogen, acid gases and volatilized hydrocarbons which may be fed along with the vacuum gas oil in the first ebullated bed hydrocracking zone.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: February 19, 2019
    Assignee: Lummus Technology Inc.
    Inventors: Arun Arora, Marvin I. Greene
  • Patent number: 10144880
    Abstract: A process for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels is disclosed. The process may include: reacting a triacylglycerides-containing oil-water-diatomic hydrogen mixture at a temperature in the range from about 250° C. to about 560° C. and a pressure greater than about 75 bar to convert at least a portion of the triacylglycerides and recovering a reaction effluent comprising water and one or more of isoolefins, isoparaffins, cycloolefins, cycloparaffins, and aromatics; and hydrotreating the reaction effluent to form a hydrotreated effluent.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: December 4, 2018
    Assignees: Chevron Lummus Global, LLC, Applied Research Associates, Inc.
    Inventors: Marvin I. Greene, Ujjal K. Mukherjee, Arun Arora, Edward Coppola, Charles Red, Jr., J. Steven Baxley, Sanjay Nana, Jeffrey Rine
  • Patent number: 10144881
    Abstract: A process for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels is disclosed. The process may include: reacting a triacylglycerides-containing oil-water-hydrogen mixture at a temperature in the range from about 250° C. to about 525° C. and a pressure greater than about 75 bar to convert at least a portion of the triacylglycerides and recovering a reaction effluent comprising water and one or more of isoolefins, isoparaffins, cycloolefins, cycloparaffins, and aromatics; hydrotreating the reaction effluent to form a hydrotreated effluent.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: December 4, 2018
    Assignees: Chevron Lummus Global, LLC, Applied Research Associates, Inc.
    Inventors: Ujjal K. Mukherjee, Arun Arora, Marvin I. Greene, Edward Coppola, Charles Red, Jr., J. Steven Baxley, Sanjay Nana, Jeffrey Rine
  • Patent number: 10087374
    Abstract: A process for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels is disclosed. The process may include: reacting a triacylglycerides-containing oil-water-hydrogen mixture at a temperature in the range from about 250° C. to about 525° C. and a pressure greater than about 75 bar to convert at least a portion of the triacylglycerides and recovering a reaction effluent comprising water and one or more of isoolefins, isoparaffins, cycloolefins, cycloparaffins, and aromatics; hydrotreating the reaction effluent to form a hydrotreated effluent.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: October 2, 2018
    Assignees: Chevron Lummus Global, LLC, Applied Research Associates, Inc.
    Inventors: Ujjal K. Mukherjee, Arun Arora, Marvin I. Greene, Edward Coppola, Charles Red, Jr., J. Steven Baxley, Sanjay Nana, Jeffrey Rine
  • Publication number: 20180127978
    Abstract: The present disclosure relates to a fiber-reinforced cement sheet product. The fiber-reinforced cement sheet product comprises at least one fiber-cement layer and at least one polymeric material layer. The polymeric material layer is chemically bonded to at least one surface of the fiber-cement layer or is sandwiched between two fiber-cement layers, to obtain the fiber-reinforced cement sheet product. The present disclosure further relates to a process for preparing the fiber-reinforced cement sheet product.
    Type: Application
    Filed: May 18, 2016
    Publication date: May 10, 2018
    Applicant: Reliance Industries Limited
    Inventors: Nilesh Shankar Revagade, Thaliyil Veedu Sreekumar, Arun Arora, Chandramouli Gangaram Gajelli, Vikas Kadu Bhangale, Suresh Bhanudas Nikam
  • Patent number: 9725661
    Abstract: Integrated processes for upgrading crude shale-derived oils, such as those produced by oil shale retorting or by in situ extraction or combinations thereof. Processes disclosed provide for a split-flow processing scheme to upgrade whole shale oil. The split flow concepts described herein, i.e., naphtha and kerosene hydrotreating in one or more stages and gas oil hydrotreating in one or more stages, requires additional equipment as compared to the alternative approach of whole oil hydrotreating. While contrary to conventional wisdom as requiring more capital equipment to achieve the same final product specifications, the operating efficiency vis a vis on-stream time efficiency and product quality resulting from the split flow concept far exceed in value the somewhat incrementally higher capital expenditure costs.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: August 8, 2017
    Assignee: Lummus Technology Inc.
    Inventors: Marvin I. Greene, Ujjal K. Mukherjee, Arun Arora
  • Publication number: 20170183573
    Abstract: Embodiments herein relate to a process flow scheme for the processing of gas oils and especially reactive gas oils produced by thermal cracking of residua using a split flow concept. The split flow concepts disclosed allow optimization of the hydrocracking reactor severities and thereby take advantage of the different reactivities of thermally cracked gas oils versus those of virgin gas oils. This results in a lower cost facility for producing base oils as well as diesel, kerosene and gasoline fuels while achieving high conversions and high catalyst lives.
    Type: Application
    Filed: March 16, 2017
    Publication date: June 29, 2017
    Applicant: Lummus Technology Inc.
    Inventors: Arun Arora, Ujjal K. Mukherjee, Wai Seung Louie, Marvin I. Greene
  • Patent number: 9631150
    Abstract: Embodiments herein relate to a process flow scheme for the processing of gas oils and especially reactive gas oils produced by thermal cracking of residua using a split flow concept. The split flow concepts disclosed allow optimization of the hydrocracking reactor seventies and thereby take advantage of the different reactivities of thermally cracked gas oils versus those of virgin gas oils. This results in a lower cost facility for producing base oils as well as diesel, kerosene and gasoline fuels while achieving high conversions and high catalyst lives.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: April 25, 2017
    Assignee: Lummus Technology Inc.
    Inventors: Arun Arora, Ujjal K. Mukherjee, Wai Seung Louie, Marvin I. Greene
  • Publication number: 20160040078
    Abstract: A process for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels is disclosed. The process may include: reacting a triacylglycerides-containing oil-water-hydrogen mixture at a temperature in the range from about 250° C. to about 525° C. and a pressure greater than about 75 bar to convert at least a portion of the triacylglycerides and recovering a reaction effluent comprising water and one or more of isoolefins, isoparaffins, cycloolefins, cycloparaffins, and aromatics; hydrotreating the reaction effluent to form a hydrotreated effluent.
    Type: Application
    Filed: October 16, 2015
    Publication date: February 11, 2016
    Applicants: CHEVRON LUMMUS GLOBAL, LLC, APPLIED RESEARCH ASSOCIATES, INC.
    Inventors: Ujjal K. Mukherjee, Arun Arora, Marvin I. Greene, Edward Coppola, Charles Red, JR., J. Steven Baxley, Sanjay Nana, Jeffrey Rine
  • Publication number: 20160017239
    Abstract: A process for converting triacylglycerides-containing oils into crude oil precursors and/or distillate hydrocarbon fuels is disclosed. The process may include: reacting a triacylglycerides-containing oil-water-hydrogen mixture at a temperature in the range from about 250° C. to about 525° C. and a pressure greater than about 75 bar to convert at least a portion of the triacylglycerides and recovering a reaction effluent comprising water and one or more of isoolefins, isoparaffins, cycloolefins, cycloparaffins, and aromatics; hydrotreating the reaction effluent to form a hydrotreated effluent.
    Type: Application
    Filed: September 29, 2015
    Publication date: January 21, 2016
    Applicants: Chevron Lummus Global, LLC, Applied Research Associates, Inc.
    Inventors: Ujjal K. Mukherjee, Arun Arora, Marvin I. Greene, Edward Coppola, Charles Red, JR., J. Steven Baxley, Sanjay Nana, Jeffrey Rine