Patents by Inventor Arun Majumdar

Arun Majumdar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9928102
    Abstract: Described herein is a method and apparatus to randomize instruction sets, memory registers, and pointers to increase computer security by increasing resource commitment requirements for malicious software, malicious computer users, or reverse engineers to understand the meaning of the new instruction sets, memory registers, and pointers.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: March 27, 2018
    Inventors: Arun Majumdar, Martin Shafer Ramsey
  • Patent number: 9881999
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: January 30, 2018
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Publication number: 20160328253
    Abstract: The Quanton virtual machine approximates solutions to NP-Hard problems in factorial spaces in polynomial time. The data representation and methods emulate quantum computing on classical hardware but also implement quantum computing if run on quantum hardware. The Quanton uses permutations indexed by Lehmer codes and permutation-operators to represent quantum gates and operations. A generating function embeds the indexes into a geometric object for efficient compressed representation. A nonlinear directional probability distribution is embedded to the manifold and at the tangent space to each index point is also a linear probability distribution. Simple vector operations on the distributions correspond to quantum gate operations. The Quanton provides features of quantum computing: superpositioning, quantization and entanglement surrogates. Populations of Quantons are evolved as local evolving gate operations solving problems or as solution candidates in an Estimation of Distribution algorithm.
    Type: Application
    Filed: May 5, 2016
    Publication date: November 10, 2016
    Applicant: KYNDI, INC.
    Inventor: Arun MAJUMDAR
  • Publication number: 20160180240
    Abstract: A system that learns by synthesizing completely new data patterns by an economic trading model of hypotheses or evidence as goods to be traded. The system comprises a society of processing modules that collectively interact with one another until steady state equilibrium is reached, in order to solve a given problem.
    Type: Application
    Filed: December 16, 2015
    Publication date: June 23, 2016
    Applicant: KYNDI, INC.
    Inventors: Arun MAJUMDAR, James Ryan WELSH
  • Publication number: 20160171212
    Abstract: Described herein is a method and apparatus to randomize instruction sets, memory registers, and pointers to increase computer security by increasing resource commitment requirements for malicious software, malicious computer users, or reverse engineers to understand the meaning of the new instruction sets, memory registers, and pointers.
    Type: Application
    Filed: December 16, 2015
    Publication date: June 16, 2016
    Applicant: KYNDI, INC.
    Inventors: Arun MAJUMDAR, Martin Shafer Ramsey
  • Publication number: 20160173124
    Abstract: A method and apparatus is provided for implementing combinatorial hypermaps (CHYMAPS) and/or generalized combinatorial maps (G-Maps) based data representations and operations, comprising: mapping term-algebras to tree-based numbers using a fast algorithm and representing a graph of the mapping structure as a CHYMAPS using reversible numeric encoding and decoding; generating a representation of CHYMAPS in a form optimized for sub-map (sub-graph) to map (graph) isomorphism and partial matching with a general matching process; performing operations on the CHYMAPS as operations on respective numerical representations; performing compression and decompression using a three bit self-delimiting binary code; and storing and retrieving codes.
    Type: Application
    Filed: December 10, 2015
    Publication date: June 16, 2016
    Applicant: KYNDI, INC.
    Inventor: Arun MAJUMDAR
  • Publication number: 20160171369
    Abstract: An analytical method and apparatus is provided for analyzing and interpreting signals from unstructured data to identify and reason about underlying concepts. The method and apparatus include functions of generating qualitative and quantitative representations of explicit semantic concepts and implicit related or associated concepts, and defining a Semantic Boundary Index used for real-time processing of unstructured data fields or streams in a manner that characterizes, stores, measures, monitors, enables transactional updates or analyses of implicit and explicit information or evidence to identify explicit and implicit or hidden semantic concept, the semantic boundary index being produced by dynamic partitioning through semiotic-based signal processing. The semiotic-based signal processing occurs through agent-based dynamic sensing, characterizing, storing, monitoring, reasoning about and partitioning of unstructured data into core semantic elements.
    Type: Application
    Filed: December 10, 2015
    Publication date: June 16, 2016
    Applicant: KYNDI, INC.
    Inventor: Arun MAJUMDAR
  • Publication number: 20160171041
    Abstract: Described herein is a method and system of geometrically encoding data including partitioning data into a plurality of semantic classes based on a dissimilarity metric, generating a subspace formed by first and second data elements, the first and second data elements being included in first and second numbers of partitioned semantic classes, encoding the first data element with respect to the second data element such that the generated subspace formed by the first data element and the second data element is orthogonal, computing a weight distribution of the first data element with respect to the second data element, the weight distribution being performed for each of the first number of semantic classes and the second number of semantic classes, and determining a dominant semantic class corresponding to an ordered sequence of the first data element and the second data element, the dominant semantic class having a maximum weight distribution.
    Type: Application
    Filed: December 10, 2015
    Publication date: June 16, 2016
    Applicant: KYNDI, INC.
    Inventor: Arun MAJUMDAR
  • Patent number: 9158847
    Abstract: The invention provides a fast approximate as well as exact hierarchical network storage and retrieval system and method for encoding and indexing graphs or networks into a data structure called the Cognitive Signature for property based, analog based or structure or sub-structure based search. The system and method produce a Cognitive Memory from a multiplicity of stored Cognitive Signatures and are ideally suited to store and index all or parts of massive data sets, linguistic graphs, protein graphs, chemical graphs, graphs of biochemical pathways, image or picture graphs as well as dynamical graphs such as traffic graphs or flows and motion picture sequences of graphs. The system and method have the advantage that properties of the Cognitive Signature of the graph can be used in correlations to the properties of the underlying data making the system ideal for semantic indexing of massive scale graph data sets.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: October 13, 2015
    Assignee: KYNDI INC.
    Inventor: Arun Majumdar
  • Publication number: 20140032580
    Abstract: A method and apparatus for mapping concepts and attributes to distance fields via rvachev-functions. The steps including generating, for a plurality of objects, equations representing boundaries of attributes for each respective object, converting, for a plurality of objects, the equations into greater than or equal to zero type inequalities, generating, for a plurality of objects, a logical expression combining regions of space defined by the inequalities into a semantic entity, and substituting, for a plurality of objects, the logical expression with a corresponding rvachev-function such that the resulting rvachev-function is equal to 0 on a boundary of the semantic entity, greater then 0 inside a region of the semantic entity, and less then 0 outside the region of the semantic entity. Also included is the step of generating a composite rvachev-function representing logical statements corresponding to the plurality of objects using the respective rvachev-functions of the objects.
    Type: Application
    Filed: September 27, 2013
    Publication date: January 30, 2014
    Applicant: AMCO LLC
    Inventor: Arun MAJUMDAR
  • Patent number: 8566321
    Abstract: A method and apparatus for mapping concepts and attributes to distance fields via rvachev-functions. The steps including generating, for a plurality of objects, equations representing boundaries of attributes for each respective object, converting, for a plurality of objects, the equations into greater than or equal to zero type inequalities, generating, for a plurality of objects, a logical expression combining regions of space defined by the inequalities into a semantic entity, and substituting, for a plurality of objects, the logical expression with a corresponding rvachev-function such that the resulting rvachev-function is equal to 0 on a boundary of the semantic entity, greater then 0 inside a region of the semantic entity, and less then 0 outside the region of the semantic entity. Also included is the step of generating a composite rvachev-function representing logical statements corresponding to the plurality of objects using the respective rvachev-functions of the objects.
    Type: Grant
    Filed: March 12, 2012
    Date of Patent: October 22, 2013
    Assignee: AmCo LLC
    Inventor: Arun Majumdar
  • Patent number: 8440453
    Abstract: A functionalized nanofluidic channel and method for functionalization that provides control over the ionic environment and geometry of the nanofluidic channel with the immobilization of biomolecules on the inner surface of the channel and use of high ionic concentration solutions. In one embodiment, the surface charge of the nanochannel is controlled with the immobilization of a protein such as streptavidin in the nanochannel. In another embodiment, the biomolecules are receptors and changes in nanochannel conductance indicates ligand binding events. The functionalized nanofluidic channel can be easily adapted for use with microchannel arrays.
    Type: Grant
    Filed: January 3, 2008
    Date of Patent: May 14, 2013
    Assignee: The Regents of the University of California
    Inventors: Peidong Yang, Rohit Karnik, Kenneth Castelino, Rong Fan, Arun Majumdar
  • Publication number: 20120233188
    Abstract: A method and apparatus for mapping concepts and attributes to distance fields via rvachev-functions. The steps including generating, for a plurality of objects, equations representing boundaries of attributes for each respective object, converting, for a plurality of objects, the equations into greater than or equal to zero type inequalities, generating, for a plurality of objects, a logical expression combining regions of space defined by the inequalities into a semantic entity, and substituting, for a plurality of objects, the logical expression with a corresponding rvachev-function such that the resulting rvachev-function is equal to 0 on a boundary of the semantic entity, greater then 0 inside a region of the semantic entity, and less then 0 outside the region of the semantic entity. Also included is the step of generating a composite rvachev-function representing logical statements corresponding to the plurality of objects using the respective rvachev-functions of the objects.
    Type: Application
    Filed: March 12, 2012
    Publication date: September 13, 2012
    Inventor: Arun MAJUMDAR
  • Publication number: 20120171778
    Abstract: A functionalized nanofluidic channel and method for functionalization that provides control over the ionic environment and geometry of the nanofluidic channel with the immobilization of biomolecules on the inner surface of the channel and use of high ionic concentration solutions. In one embodiment, the surface charge of the nanochannel is controlled with the immobilization of a protein such as streptavidin in the nanochannel. In another embodiment, the biomolecules are receptors and changes in nanochannel conductance indicates ligand binding events. The functionalized nanofluidic channel can be easily adapted for use with microchannel arrays.
    Type: Application
    Filed: January 3, 2008
    Publication date: July 5, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Peidong Yang, Rohit Karnik, Kenneth Castelino, Rong Fan, Arun Majumdar
  • Patent number: 8093628
    Abstract: Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: January 10, 2012
    Assignee: The Regents of the University of California
    Inventors: Peidong Yang, Rongrui He, Joshua Goldberger, Rong Fan, Yiying Wu, Deyu Li, Arun Majumdar
  • Publication number: 20110189500
    Abstract: Carbon nanotube (CNT) arrays can be used as a thermal interface materials (TIMs). Using a phase sensitive transient thermo-reflectance (PSTTR) technique, the thermal conductance of the two interfaces on either side of the CNT arrays can be measured. The physically bonded interface has a conductance ˜105 W/m2-K and is the dominant resistance. Also by bonding CNTs to target surfaces using indium, it can be demonstrated that the conductance can be increased to ˜106 W/m2-K making it attractive as a thermal interface material (TIM).
    Type: Application
    Filed: October 4, 2007
    Publication date: August 4, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Arun Majumdar, Tao Tong, Yang Zhao, Lance Delzeit, Ali Kashani, Meyya Meyyappan
  • Publication number: 20110168968
    Abstract: Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches.
    Type: Application
    Filed: February 7, 2008
    Publication date: July 14, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Peidong Yang, Rongrui He, Joshua Goldberger, Rong Fan, Yiying Wu, Deyu Li, Arun Majumdar
  • Patent number: 7834264
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: November 16, 2010
    Assignee: The Regents of the University of California
    Inventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan
  • Publication number: 20100233029
    Abstract: A sensor having a membrane, which is adapted to deflect in response to a change in surface stress. The membrane has a first and a second surface, which includes a first coating layer on the first surface of the membrane, and a second coating layer on the second surface of the membrane. The first coating layer is adapted to couple one or more probe molecules with the membrane.
    Type: Application
    Filed: September 12, 2007
    Publication date: September 16, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Arun Majumdar, Si-Hyung Lim
  • Publication number: 20100003516
    Abstract: One-dimensional nanostructures having uniform diameters of less than approximately 200 nm. These inventive nanostructures, which we refer to as “nanowires”, include single-crystalline homostructures as well as heterostructures of at least two single-crystalline materials having different chemical compositions. Because single-crystalline materials are used to form the heterostructure, the resultant heterostructure will be single-crystalline as well. The nanowire heterostructures are generally based on a semiconducting wire wherein the doping and composition are controlled in either the longitudinal or radial directions, or in both directions, to yield a wire that comprises different materials. Examples of resulting nanowire heterostructures include a longitudinal heterostructure nanowire (LOHN) and a coaxial heterostructure nanowire (COHN).
    Type: Application
    Filed: June 19, 2009
    Publication date: January 7, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Arun Majumdar, Ali Shakouri, Timothy D. Sands, Peidong Yang, Samuel S. Mao, Richard E. Russo, Henning Feick, Eicke R. Weber, Hannes Kind, Michael Huang, Haoquan Yan, Yiying Wu, Rong Fan