Patents by Inventor Arun Persaud

Arun Persaud has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220135409
    Abstract: This disclosure provides systems, methods, and apparatus related to color centers. In one aspect, a method includes providing diamond doped with a dopant. A heavy-ion is directed to the diamond that passes through the diamond. The heavy-ion forms a line of dopant-vacancy centers as it passes through the diamond.
    Type: Application
    Filed: October 25, 2021
    Publication date: May 5, 2022
    Inventors: Thomas Schenkel, Arun Persaud, Edward Barnard
  • Publication number: 20210151206
    Abstract: An apparatus and method for sourcing nuclear fusion products uses an electrochemical loading process to load low-kinetic-energy (low-k) light element particles into a target electrode, which comprises a light-element-absorbing material (e.g., Palladium). An electrolyte solution containing the low-k light element particles is maintained in contact with a backside surface of the target electrode while a bias voltage is applied between the target electrode and an electrochemical anode, thereby causing low-k light element particles to diffuse from the backside surface to an opposing frontside surface of the target electrode. High-kinetic-energy (high-k) light element particles are directed against the frontside, thereby causing fusion reactions each time a high-k light element particle operably collides with a low-k light element particle disposed on the frontside surface. Fusion reaction rates are controlled by adjusting the bias voltage.
    Type: Application
    Filed: March 2, 2020
    Publication date: May 20, 2021
    Inventors: Thomas Schenkel, Ross Koningstein, Peter Seidl, Arun Persaud, Qing Ji, David K. Fork, Matthew D. Trevithick, Curtis Berlinguette, Philip A. Schauer, Benjamin P. MacLeod
  • Patent number: 10912184
    Abstract: A wafer-based charged particle accelerator includes a charged particle source and at least one RF charged particle accelerator wafer sub-assembly and a power supply coupled to the at least one RF charged particle accelerator wafer sub-assembly. The wafer-based charged particle accelerator may further include a beam current-sensor. The wafer-based charged particle accelerator may further include at least a second RF charged particle accelerator wafer sub-assembly and at least one ESQ charged particle focusing wafer. Fabrication methods are disclosed for RF charged particle accelerator wafer sub-assemblies, ESQ charged particle focusing wafers, and the wafer-based charged particle accelerator.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: February 2, 2021
    Assignee: Cornell University
    Inventors: Amit Lal, Thomas Schenkel, Arun Persaud, Qing Ji, Peter Seidl, Will Waldron, Serhan Ardanuc, Vinaya Kumar Kadayra Basavarajappa
  • Publication number: 20200187344
    Abstract: A wafer-based charged particle accelerator includes a charged particle source and at least one RF charged particle accelerator wafer sub-assembly and a power supply coupled to the at least one RF charged particle accelerator wafer sub-assembly. The wafer-based charged particle accelerator may further include a beam current-sensor. The wafer-based charged particle accelerator may further include at least a second RF charged particle accelerator wafer sub-assembly and at least one ESQ charged particle focusing wafer. Fabrication methods are disclosed for RF charged particle accelerator wafer sub-assemblies, ESQ charged particle focusing wafers, and the wafer-based charged particle accelerator.
    Type: Application
    Filed: August 12, 2019
    Publication date: June 11, 2020
    Applicant: Cornell University
    Inventors: Amit Lal, Thomas Schenkel, Arun Persaud, Qing Ji, Peter Seidl, Will Waldron, Serhan Ardanuc, Vinaya Kumar Kadayra Basavarajappa
  • Patent number: 10383205
    Abstract: A wafer-based charged particle accelerator includes a charged particle source and at least one RF charged particle accelerator wafer sub-assembly and a power supply coupled to the at least one RF charged particle accelerator wafer sub-assembly. The wafer-based charged particle accelerator may further include a beam current-sensor. The wafer-based charged particle accelerator may further include at least a second RF charged particle accelerator wafer sub-assembly and at least one ESQ charged particle focusing wafer. Fabrication methods are disclosed for RF charged particle accelerator wafer sub-assemblies, ESQ charged particle focusing wafers, and the wafer-based charged particle accelerator.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: August 13, 2019
    Assignee: Cornell University
    Inventors: Amit Lal, Thomas Schenkel, Arun Persaud, Qing Ji, Peter Seidl, Will Waldron, Serhan Ardanuc, Vinaya Kumar Kadayra Basavarajappa
  • Publication number: 20190159331
    Abstract: A wafer-based charged particle accelerator includes a charged particle source and at least one RF charged particle accelerator wafer sub-assembly and a power supply coupled to the at least one RF charged particle accelerator wafer sub-assembly. The wafer-based charged particle accelerator may further include a beam current-sensor. The wafer-based charged particle accelerator may further include at least a second RF charged particle accelerator wafer sub-assembly and at least one ESQ charged particle focusing wafer. Fabrication methods are disclosed for RF charged particle accelerator wafer sub-assemblies, ESQ charged particle focusing wafers, and the wafer-based charged particle accelerator.
    Type: Application
    Filed: May 4, 2017
    Publication date: May 23, 2019
    Applicant: CORNELL UNIVERSITY
    Inventors: Amit Lal, Thomas Schenkel, Arun Persaud, Qing JI, Peter Seidl, Will Waldron, Serhan Ardanuc, Vinaya Kumar Kadayra Basavarajappa
  • Patent number: 9484176
    Abstract: This disclosure provides systems, methods, and apparatus for ion generation. In one aspect, an apparatus includes an anode, a first cathode, a second cathode, and a plurality of cusp magnets. The anode has a first open end and a second open end. The first cathode is associated with the first open end of the anode. The second cathode is associated with the second open end of the anode. The anode, the first cathode, and the second cathode define a chamber. The second cathode has an open region configured for the passage of ions from the chamber. Each cusp magnet of the plurality of cusp magnets is disposed along a length of the anode.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: November 1, 2016
    Inventors: Thomas Schenkel, Qing Ji, Arun Persaud, Amy V. Sy
  • Patent number: 9161429
    Abstract: A neutron generator includes a conductive substrate comprising a plurality of conductive nanostructures with free-standing tips and a source of an atomic species to introduce the atomic species in proximity to the free-standing tips. A target placed apart from the substrate is voltage biased relative to the substrate to ionize and accelerate the ionized atomic species toward the target. The target includes an element capable of a nuclear fusion reaction with the ionized atomic species to produce a one or more neutrons as a reaction by-product.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: October 13, 2015
    Assignee: The Regents of the University of California
    Inventors: Thomas Schenkel, Arun Persaud, Rehan Kapadia, Ali Javey, Constance Chang-Hasnain, Ivo Rangelow, Joe Kwan
  • Patent number: 8709350
    Abstract: An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: April 29, 2014
    Assignee: The Regents of the University of California
    Inventors: Thomas Schenkel, Arun Persaud, Rehan Kapadia, Ali Javey
  • Publication number: 20140070701
    Abstract: This disclosure provides systems, methods, and apparatus for ion generation. In one aspect, an apparatus includes an anode, a first cathode, a second cathode, and a plurality of cusp magnets. The anode has a first open end and a second open end. The first cathode is associated with the first open end of the anode. The second cathode is associated with the second open end of the anode. The anode, the first cathode, and the second cathode define a chamber. The second cathode has an open region configured for the passage of ions from the chamber. Each cusp magnet of the plurality of cusp magnets is disposed along a length of the anode.
    Type: Application
    Filed: September 4, 2013
    Publication date: March 13, 2014
    Applicant: The Regents of the University of California
    Inventors: Thomas Schenkel, Qing Ji, Arun Persaud, Amy V. Sy
  • Publication number: 20130044846
    Abstract: A neutron generator includes a conductive substrate comprising a plurality of conductive nanostructures with free-standing tips and a source of an atomic species to introduce the atomic species in proximity to the free-standing tips. A target placed apart from the substrate is voltage biased relative to the substrate to ionize and accelerate the ionized atomic species toward the target. The target includes an element capable of a nuclear fusion reaction with the ionized atomic species to produce a one or more neutrons as a reaction by-product.
    Type: Application
    Filed: April 19, 2012
    Publication date: February 21, 2013
    Applicant: Regents of the University of California
    Inventors: Thomas Schenkel, Arun Persaud, Rehan Kapadia, Ali Javey, Constance Chang-Hasnain, Ivo Rangelow, Joe Kwan
  • Publication number: 20120273342
    Abstract: An ion source includes a conductive substrate, the substrate including a plurality of conductive nanostructures with free-standing tips formed on the substrate. A conductive catalytic coating is formed on the nanostructures and substrate for dissociation of a molecular species into an atomic species, the molecular species being brought in contact with the catalytic coating. A target electrode placed apart from the substrate, the target electrode being biased relative to the substrate with a first bias voltage to ionize the atomic species in proximity to the free-standing tips and attract the ionized atomic species from the substrate in the direction of the target electrode.
    Type: Application
    Filed: April 19, 2012
    Publication date: November 1, 2012
    Applicant: Regents of the University of California
    Inventors: Thomas Schenkel, Arun Persaud, Rehan Kapadia, Ali Javey
  • Patent number: 6768120
    Abstract: An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.
    Type: Grant
    Filed: August 30, 2002
    Date of Patent: July 27, 2004
    Assignee: The Regents of the University of California
    Inventors: Ka-Ngo Leung, Jani Reijonen, Arun Persaud, Qing Ji, Ximan Jiang
  • Publication number: 20040036032
    Abstract: An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.
    Type: Application
    Filed: August 30, 2002
    Publication date: February 26, 2004
    Inventors: Ka-Ngo Leung, Jani Reijonen, Arun Persaud, Qing Ji, Ximan Jiang