Patents by Inventor Arun Raghupathy

Arun Raghupathy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230221144
    Abstract: A method involves identifying multiple calibration values and corresponding calibration confidence values of an initial calibration dataset in which one or more calibration values were derived using an atmospheric pressure measurement from a barometric air pressure sensor of a mobile device. A calibration metric is determined for each calibration value. One or more of the calibration values are filtered out from the initial calibration dataset based on the calibration metric to generate a filtered calibration dataset. A filtered calibration value is determined using the filtered calibration dataset. The barometric air pressure sensor of the mobile device is calibrated using the filtered calibration value.
    Type: Application
    Filed: January 6, 2023
    Publication date: July 13, 2023
    Applicant: NextNav, LLC
    Inventors: Michael DORMODY, Guiyuan HAN, Badrinath NAGARAJAN, Arun RAGHUPATHY
  • Patent number: 11680918
    Abstract: A battery pack includes a battery, a first temperature sensor configured to provide a first temperature value associated with a temperature of the battery, a heat source disposed proximate to the battery and configured to heat the battery, a second temperature sensor configured to provide a second temperature value associated with a temperature of the heat source, and a control board coupled to the first temperature sensor and the second temperature sensor, wherein the control board is configured to receive the first temperature value and the second temperature value. The control board is configured to compare the first temperature value and the second temperature value to determine a temperature gradient between the battery and the heat source and transmit an alert if the temperature gradient exceeds a first temperature gradient threshold.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: June 20, 2023
    Assignee: Google LLC
    Inventors: David Wang, Arun Raghupathy, James Robert Lim, Ihab A. Ali, Chang Hong Ye
  • Patent number: 11680677
    Abstract: This application is directed to a passively-cooled electronic device including a housing, a plurality of electronic assemblies and a plurality of thermally conductive parts. The electronic assemblies are enclosed in the housing and include a first electronic assembly and a second electronic assembly. The first and second electronic assemblies are disposed proximately to each other within the housing, and the second electronic assembly is substantially sensitive to heat, including heat generated by operation of the first electronic assembly. The thermally conductive parts are coupled between the first electronic assembly and the housing, and configured to create a first plurality of heat conduction paths to conduct the heat generated by the first electronic assembly away from the second electronic assembly without using a fan. At least a subset of the thermally conductive parts mechanically supports one or both of the first and second electronic assemblies.
    Type: Grant
    Filed: April 1, 2022
    Date of Patent: June 20, 2023
    Assignee: Google LLC
    Inventors: Arun Raghupathy, Benjamin Niewood, Cheng-Jung Lee, Adam Scott Kilgore
  • Patent number: 11669170
    Abstract: Determining contexts of mobile devices. Particular embodiments described herein include machines that determine two estimated positions of a mobile device that respectively correspond to first and second locations at first and second times, acquire sets of terrain or structural information for first and second areas that respectively include the first and second estimated positions, use the acquired sets of information and the estimated positions to determine if the mobile device was near or within a structure at the first and second times, determine one or more values that are indicative of vertical movement by the mobile device during a period of time between the first time and the second time, compare the one or more values to one or more threshold conditions, and determine a context of the mobile device based on the comparison.
    Type: Grant
    Filed: December 17, 2021
    Date of Patent: June 6, 2023
    Assignee: NextNav, LLC
    Inventors: Michael Dormody, Arun Raghupathy, Badrinath Nagarajan, Guiyuan Han
  • Publication number: 20230160770
    Abstract: Multiple calibration results for calibrating a barometric pressure sensor based on data received from a device containing the sensor are determined and stored in a table. The table is updated based on rules regarding a relationship between each calibration result and a current calibration value. The calibration results are weighted and combined to determine a combined calibration result. The calibration value for calibrating the sensor is selected from the calibration results, the combined calibration results, or the current calibration value based on a selection criteria.
    Type: Application
    Filed: January 20, 2023
    Publication date: May 25, 2023
    Applicant: NextNav, LLC
    Inventors: Michael DORMODY, Guiyuan HAN, Badrinath NAGARAJAN, Arun RAGHUPATHY
  • Publication number: 20230152489
    Abstract: Field calibration of a pressure device involves collecting simultaneous pressure data or pressure and temperature data at two devices for multiple time points. Pressure differences between pairs of simultaneous data points of the collected pressure data are calculated. A model is fitted to the pressure differences and the temperatures and/or pressures, and model parameters are used to correct measurements from the second device. Alternatively, a pressure gradient is estimated for a region that encompasses the two devices for each time point. A distance is determined between the two devices. A pressure gradient difference is determined between the two devices for each time point. A pressure difference offset is obtained for one of the pairs of simultaneous data points for each time point. An average pressure difference offset is determined between the two devices and is used to correct measurements from one of the devices.
    Type: Application
    Filed: November 7, 2022
    Publication date: May 18, 2023
    Applicant: NextNav, LLC
    Inventors: Michael DORMODY, Guiyuan HAN, Badrinath NAGARAJAN, Wei LIU, Prashant DAVE, Arun RAGHUPATHY
  • Patent number: 11650330
    Abstract: Embodiments describe determining position by selecting a set of digital pseudorandom sequences. The magnitudes of the cross-correlation between any two sequences of the chosen set are below a specified threshold. A subset of digital pseudorandom sequences are selected from the set such that the magnitudes of the autocorrelation function of each member of the subset, within a specified region adjacent to the peak of the autocorrelation function, are equal to or less than a prescribed value. Each transmitter transmits a positioning signal, and at least a portion of the positioning signal is modulated with at least one member of the subset. At least two transmitters of the plurality of transmitters modulate respective positioning signals with different members of the subset of digital pseudorandom sequences.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: May 16, 2023
    Assignee: NextNav, LLC
    Inventors: Arun Raghupathy, Norman F. Krasner
  • Publication number: 20230138050
    Abstract: A method to identify a problematic 2D position of a mobile device can include: determining a reported 2D position of the mobile device; determining a piece of information about the mobile device; and comparing the reported 2D position and the piece of information about the mobile device. Upon determining that the reported 2D position and the piece of information about the mobile device are consistent with each other, the reported 2D position of the mobile device is used as an estimate of the actual 2D position of the mobile device, or upon determining that the reported 2D position and the piece of information about the mobile device are not consistent with each other, the reported 2D position is determined to be problematic, and the reported 2D position of the mobile device is removed from a list of reported 2D positions of the mobile device.
    Type: Application
    Filed: October 29, 2021
    Publication date: May 4, 2023
    Applicant: NextNav, LLC
    Inventors: Guiyuan HAN, Michael DORMODY, Badrinath NAGARAJAN, Arun RAGHUPATHY
  • Publication number: 20230075640
    Abstract: A calculated current lapse rate is determined for a geographical area that includes a location of a mobile device. The calculated current lapse rate provides an estimated air temperature variation with respect to altitude variation for the location of the mobile device. An altitude of the mobile device is estimated. An uncertainty of the altitude of the mobile device is estimated based on a reference pressure and a reference temperature for a reference plane that is within the geographical area, a device pressure for the mobile device, and the calculated current lapse rate.
    Type: Application
    Filed: September 7, 2021
    Publication date: March 9, 2023
    Applicant: NextNav, LLC
    Inventors: Michael DORMODY, Badrinath NAGARAJAN, Arun RAGHUPATHY, Guiyuan HAN
  • Patent number: 11579036
    Abstract: Multiple calibration results for calibrating a barometric pressure sensor based on data received from a device containing the sensor are determined and stored in a table. The table is updated based on rules regarding a relationship between each calibration result and a current calibration value. The calibration results are weighted and combined to determine a combined calibration result. The calibration value for calibrating the sensor is selected from the calibration results, the combined calibration results, or the current calibration value based on a selection criteria.
    Type: Grant
    Filed: April 20, 2022
    Date of Patent: February 14, 2023
    Assignee: NextNav, LLC
    Inventors: Michael Dormody, Guiyuan Han, Badrinath Nagarajan, Arun Raghupathy
  • Publication number: 20230028950
    Abstract: A wholistic activity context is used to determine whether to calibrate a barometric pressure sensor of a mobile device. A pair of activity transitions are determined from three activities of the mobile device. A time relationship and a position relationship between the activity transitions is determined. An opportunity to calibrate the barometric pressure sensor occurs between the activity transitions. A calibration of the barometric pressure sensor is performed in response to determining that the time relationship and the position relationship indicate that the wholistic activity context surrounding the opportunity to calibrate the barometric pressure sensor is conducive to calibration.
    Type: Application
    Filed: July 23, 2021
    Publication date: January 26, 2023
    Applicant: NextNav, LLC
    Inventors: Michael DORMODY, Badrinath NAGARAJAN, Arun RAGHUPATHY, Guiyuan HAN
  • Publication number: 20220377499
    Abstract: A method involves determining, at a mobile device or a service, an uncertainty in height above a reference altitude, an estimated 2D position of the mobile device, and an uncertainty in terrain height above the reference altitude using the estimated 2D position. An uncertainty in height above terrain, of the mobile device, is determined at the mobile device or a server using the uncertainty in height above the reference altitude and the uncertainty in terrain height above the reference altitude.
    Type: Application
    Filed: July 29, 2022
    Publication date: November 24, 2022
    Applicant: NextNav, LLC
    Inventors: Michael DORMODY, Badrinath NAGARAJAN, Guiyuan HAN, Arun RAGHUPATHY
  • Patent number: 11418914
    Abstract: A method involves determining, at a mobile device or a service, an uncertainty in height above a reference altitude, an estimated 2D position of the mobile device, and an uncertainty in terrain height above the reference altitude using the estimated 2D position. An uncertainty in height above terrain, of the mobile device, is determined at the mobile device or a server using the uncertainty in height above the reference altitude and the uncertainty in terrain height above the reference altitude.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: August 16, 2022
    Assignee: NextNav, LLC
    Inventors: Michael Dormody, Badrinath Nagarajan, Guiyuan Han, Arun Raghupathy
  • Publication number: 20220244126
    Abstract: Multiple calibration results for calibrating a barometric pressure sensor based on data received from a device containing the sensor are determined and stored in a table. The table is updated based on rules regarding a relationship between each calibration result and a current calibration value. The calibration results are weighted and combined to determine a combined calibration result. The calibration value for calibrating the sensor is selected from the calibration results, the combined calibration results, or the current calibration value based on a selection criteria.
    Type: Application
    Filed: April 20, 2022
    Publication date: August 4, 2022
    Applicant: NextNav, LLC
    Inventors: Michael DORMODY, Guiyuan HAN, Badrinath NAGARAJAN, Arun RAGHUPATHY
  • Publication number: 20220221101
    Abstract: This application is directed to a passively-cooled electronic device including a housing, a plurality of electronic assemblies and a plurality of thermally conductive parts. The electronic assemblies are enclosed in the housing and include a first electronic assembly and a second electronic assembly. The first and second electronic assemblies are disposed proximately to each other within the housing, and the second electronic assembly is substantially sensitive to heat, including heat generated by operation of the first electronic assembly. The thermally conductive parts are coupled between the first electronic assembly and the housing, and configured to create a first plurality of heat conduction paths to conduct the heat generated by the first electronic assembly away from the second electronic assembly without using a fan. At least a subset of the thermally conductive parts mechanically supports one or both of the first and second electronic assemblies.
    Type: Application
    Filed: April 1, 2022
    Publication date: July 14, 2022
    Applicant: Google LLC
    Inventors: Arun Raghupathy, Benjamin Niewood, Cheng-Jung Lee, Adam Scott Kilgore
  • Patent number: 11353158
    Abstract: This application is directed to a passively-cooled electronic device including a housing, a plurality of electronic assemblies and a plurality of thermally conductive parts. The electronic assemblies are enclosed in the housing, and include a first electronic assembly and a second electronic assembly. The first and second electronic assemblies are disposed proximately to each other within the housing, and the second electronic assembly is substantially sensitive to heat, including heat generated by operation of the first electronic assembly. The thermally conductive parts are coupled between the first electronic assembly and the housing, and configured to create a first plurality of heat conduction paths to conduct the heat generated by the first electronic assembly away from the second electronic assembly without using a fan. At least a subset of the thermally conductive parts mechanically supports one or both of the first and second electronic assemblies.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: June 7, 2022
    Assignee: Google LLC
    Inventors: Arun Raghupathy, Benjamin Niewood, Cheng-Jung Lee, Adam Scott Kilgore
  • Patent number: 11333567
    Abstract: Multiple calibration results for calibrating a barometric pressure sensor based on data received from a device containing the sensor are determined and stored in a table. The table is updated based on rules regarding a relationship between each calibration result and a current calibration value. The calibration results are weighted and combined to determine a combined calibration result. The calibration value for calibrating the sensor is selected from the calibration results, the combined calibration results, or the current calibration value based on a selection criteria.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: May 17, 2022
    Assignee: NextNav, LLC
    Inventors: Michael Dormody, Guiyuan Han, Badrinath Nagarajan, Arun Raghupathy
  • Publication number: 20220136830
    Abstract: Calibrating a pressure sensor of a mobile device incudes determining an absolute calibration value used to calibrate pressure measurements by a pressure sensor of a mobile device; determining a first revisit zone as a first location to which the mobile device repeatedly returns; determining first and second calibrations for first and second visits to the first revisit zone; determining a first relative calibration adjustment value based on a difference between the first and second calibrations; determining an adjusted absolute calibration value based on a sum of the absolute calibration value and the first relative calibration adjustment value; and estimating an altitude of the mobile device based on a pressure measurement by the pressure sensor and the adjusted absolute calibration value.
    Type: Application
    Filed: January 12, 2022
    Publication date: May 5, 2022
    Applicant: NextNav, LLC
    Inventors: Michael DORMODY, Deepak JOSEPH, Badrinath NAGARAJAN, Guiyuan HAN, Arun RAGHUPATHY
  • Publication number: 20220128355
    Abstract: Methods and machines involve detecting when a mobile device is in a first area and a second area at different times, collecting pressure data from the mobile device and reference sensor(s) to estimate altitudes of the mobile device within the first area and the second area, collecting terrain altitudes associated with the first area and the second area, and using a difference between the estimated altitudes and a difference between the terrain altitudes to determine a height of a floor. The estimated floor height may be used to calibrate a pressure sensor of a mobile device.
    Type: Application
    Filed: January 3, 2022
    Publication date: April 28, 2022
    Applicant: NextNav, LLC
    Inventors: Badrinath NAGARAJAN, Arun RAGHUPATHY, Michael DORMODY, Guiyuan HAN
  • Publication number: 20220107690
    Abstract: Determining contexts of mobile devices. Particular embodiments described herein include machines that determine two estimated positions of a mobile device that respectively correspond to first and second locations at first and second times, acquire sets of terrain or structural information for first and second areas that respectively include the first and second estimated positions, use the acquired sets of information and the estimated positions to determine if the mobile device was near or within a structure at the first and second times, determine one or more values that are indicative of vertical movement by the mobile device during a period of time between the first time and the second time, compare the one or more values to one or more threshold conditions, and determine a context of the mobile device based on the comparison.
    Type: Application
    Filed: December 17, 2021
    Publication date: April 7, 2022
    Applicant: NextNav, LLC
    Inventors: Michael DORMODY, Arun RAGHUPATHY, Badrinath NAGARAJAN, Guiyuan HAN