Patents by Inventor Aruna Zhamu

Aruna Zhamu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11978904
    Abstract: Provided is an anode active material layer for a lithium battery. The anode active material layer comprises multiple anode active material particles and an optional conductive additive that are bonded together by a binder comprising a high-elasticity polymer having a recoverable or elastic tensile strain no less than 5% when measured without an additive or reinforcement in the polymer. The high-elasticity polymer contains a cross-linked network of polymer chains. The anode active material preferably has a specific lithium storage capacity greater than 372 mAh/g (e.g. Si, Ge, Sn, SnO2, Co3O4, etc.).
    Type: Grant
    Filed: October 7, 2020
    Date of Patent: May 7, 2024
    Assignee: Honeycomb Battery Company
    Inventors: Hui He, Aruna Zhamu, Bor Z. Jang
  • Patent number: 11965115
    Abstract: Provided is a humic acid-based coating suspension comprising humic acid, particles of an anti-corrosive pigment or sacrificial metal, and a binder resin dissolved or dispersed in a liquid medium, wherein the humic acid has a weight fraction from 0.1% to 50% based on the total coating suspension weight excluding the liquid medium. Also provided is an object or structure coated at least in part with such a coating.
    Type: Grant
    Filed: November 16, 2021
    Date of Patent: April 23, 2024
    Assignee: Global Graphene Group, Inc.
    Inventors: Yi-Jun Lin, Aruna Zhamu, Bor Z. Jang
  • Patent number: 11958382
    Abstract: Provided is a battery charging system, comprising (a) at least one charging circuit to charge at least one rechargeable battery cell; and (b) a heating device to provide heat that is transported through a heat spreader element, implemented fully outside the battery cell, to heat up the battery cell to a desired temperature Tc before or during battery charging. The system may further comprise (c) a cooling device in thermal contact with the heat spreader element configured to enable transporting internal heat of the battery cell through the heat spreader element to the cooling device when the battery cell is discharged. Charging the battery at Tc enables completion of the charging of the battery in less than 15 minutes, typically less than 10 minutes, and more typically less than 5 minutes without adversely impacting the battery structure and performance. Also provided is a battery module or pack working with such a system.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: April 16, 2024
    Assignee: Honeycomb Battery Company
    Inventors: Aruna Zhamu, Yu-Sheng Su, Bor Z. Jang
  • Publication number: 20240108954
    Abstract: Lacrosse shafts are provided that include graphene. The graphene increases the durability of the lacrosse shafts. Also provided is equipment for other contact sports that include graphene to increase durability.
    Type: Application
    Filed: December 8, 2023
    Publication date: April 4, 2024
    Inventors: Hamilton Sean Michael WHITNEY, Gregory Lee KENNEALLY, Chia-Jen HSU, Bor Z. JANG, Aruna ZHAMU
  • Patent number: 11949063
    Abstract: A rechargeable lithium cell comprising: (a) a cathode having a cathode active material and a first electrolyte in ionic contact with the cathode active material; (b) an anode having an anode current collector but no anode active material and having no lithium metal when the cell is made; (c) an optional porous separator electronically separating the anode and the cathode; and (d) a second electrolyte, comprising a polymer electrolyte in ionic contact with the first electrolyte, wherein the polymer electrolyte is disposed substantially between the anode and the cathode, between the separator and the cathode, and/or between the separator and the anode. The polymer electrolyte substantially does not permeate into the anode or the cathode. Also provided is a method of preparing or operating such an anode-less lithium cell.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: April 2, 2024
    Assignee: Global Graphene Group, Inc.
    Inventors: Hui He, Aruna Zhamu, Bor Z. Jang
  • Patent number: 11949083
    Abstract: Provided is a battery assembly having a distributed cooling and fire protection system, the battery assembly comprising: (a) a plurality of battery cells; (b) a case configured to hold the plurality of battery cells; and (c) a cooling liquid distribution system, having a cooling liquid reservoir and/or pipes that are in proximity to at least a subset of the plurality of the cells and configured to deliver, on demand, a desired amount of the first cooling liquid on a cell or multiple cells in the vicinity of the cell when a temperature of the cell exceeds a threshold temperature; wherein the first cooling liquid comprises a fire protection or fire suppression substance which, on contact with the cell, prevents, retards, or extinguishes a cell fire and prevents a propagation or cell-to-cell cascading reactions of a thermal runaway or fire event.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: April 2, 2024
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 11945971
    Abstract: Provided is a graphene-based coating suspension comprising multiple graphene sheets, thin film coating of an anti-corrosive pigment or sacrificial metal deposited on graphene sheets, and a binder resin dissolved or dispersed in a liquid medium, wherein the multiple graphene sheets contain single-layer or few-layer graphene sheets selected from a pristine graphene material having essentially zero % of non-carbon elements, or a non-pristine graphene material having 0.001% to 47% by weight of non-carbon elements wherein the non-pristine graphene is selected from graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, doped graphene, chemically functionalized graphene, or a combination thereof. The invention also provides a process for producing this coating suspension. Also provided is an object or structure coated at least in part with such a coating.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: April 2, 2024
    Assignee: Global Graphene Group, Inc.
    Inventors: Fan-Chun Meng, Yi-jun Lin, Shaio-yen Lee, Wen Y. Chiu, Aruna Zhamu, Bor Z. Jang
  • Patent number: 11923526
    Abstract: Provided is a process for producing a thin film graphene-bonded metal foil current collector for a battery or supercapacitor, said process comprising: (a) providing a graphene suspension comprising graphene sheets dispersed in a liquid medium; (b) operating a micro-gravure coater to deposit a layer of the graphene suspension onto at least one of the two primary surfaces of a metal foil to form a wet layer of graphene deposited thereon; and (c) removing said fluid medium from the deposited wet layer to form a dry layer of graphene, having a layer thickness from 1 nm to 100 nm. Optionally, the process may include heat treating the dry layer of graphene at a temperature from 35° C. to 3,000° C.
    Type: Grant
    Filed: May 11, 2020
    Date of Patent: March 5, 2024
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Yanbo Wang, Bor Z. Jang
  • Patent number: 11916189
    Abstract: Provided is apparatus for introducing a quasi-solid electrolyte into one or a plurality of lithium battery cells, the apparatus comprising: (a) a cell-holding device to hold one or a plurality of lithium battery cells and is in a working relation to a liquid electrolyte-filling device that injects a liquid electrolyte into the battery cells, wherein the liquid electrolyte comprises a lithium salt dissolved in a first liquid solvent having a first lithium salt concentration from 0.001 M to 3.0 M (mole/L); and (b) a solvent vapor-removing device in a working relation to the cell-holding device, wherein the vapor-removing device comprises a pumping device to move solvent vapors away from the battery cells so that the electrolyte has a final lithium salt concentration higher than the first concentration and higher than 2.0 M. Also provided is a method of operating the apparatus.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: February 27, 2024
    Assignee: Global Graphene Group, Inc.
    Inventors: Hui He, Aruna Zhamu, Bor Z. Jang
  • Publication number: 20240041031
    Abstract: Provided is graphene-based protective layer deposited on a surface of a clean facility (e.g., a medical facility), wherein the protective layer comprises graphene sheets coated on the surface or at least partially embedded in the surface, wherein the graphene sheets comprise a plurality of discrete single-layer or few-layer graphene sheets selected from pristine graphene, graphene oxide, reduced graphene oxide, graphene fluoride, graphene chloride, graphene bromide, graphene iodide, hydrogenated graphene, nitrogenated graphene, doped graphene, chemically functionalized graphene, or a combination thereof. Preferably, surfaces of graphene sheets carry an anti-microbial compound, preferably in the form of a nanoparticle, nano-wire, or nano-coating.
    Type: Application
    Filed: August 4, 2022
    Publication date: February 8, 2024
    Applicant: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 11870051
    Abstract: Provided is a method of improving fast-chargeability of a lithium secondary battery containing an anode, a cathode, a porous separator disposed between the anode and the cathode, and an electrolyte, wherein the method comprises packing particles of an anode active material to form an anode active material layer having interstitial spaces and disposing a lithium ion reservoir in the interstitial spaces, configured to receive lithium ions from the cathode through the porous separator when the battery is charged and to enable the lithium ions to enter the particles of anode active material in a time-delayed manner.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: January 9, 2024
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 11865421
    Abstract: Lacrosse heads are provided that include a polymer and graphene. The graphene increases the durability of the lacrosse heads. Also provided is equipment for other contact sports that include graphene to increase durability.
    Type: Grant
    Filed: July 6, 2021
    Date of Patent: January 9, 2024
    Assignee: EAST COAST DYES, INC.
    Inventors: Hamilton Sean Michael Whitney, Gregory Lee Kenneally, Chia-Jen Hsu, Bor Z. Jang, Aruna Zhamu
  • Patent number: 11791449
    Abstract: Provided is a multivalent metal-ion battery comprising an anode, a cathode, and an electrolyte in ionic contact with the anode and the cathode to support reversible deposition and dissolution of a multivalent metal, selected from Ni, Zn, Be, Mg, Ca, Ba, La, Ti, Ta, Zr, Nb, Mn, V, Co, Fe, Cd, Cr, Ga, In, or a combination thereof, at the anode, wherein the anode contains the multivalent metal or its alloy as an anode active material and the cathode comprises a cathode active layer of a graphite or carbon material having expanded inter-graphene planar spaces with an inter-planar spacing d002 from 0.43 nm to 2.0 nm as measured by X-ray diffraction. Such a metal-ion battery delivers a high energy density, high power density, and long cycle life.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: October 17, 2023
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z Jang
  • Patent number: 11772975
    Abstract: A method of producing isolated graphene sheets directly from a graphitic material, comprising: a) mixing multiple particles of a graphitic material and multiple particles of a solid carrier material to form a mixture in an impacting chamber of an energy impacting apparatus; b) operating the impacting apparatus for peeling off graphene sheets from the graphitic material and transferring these graphene sheets to surfaces of solid carrier material particles to produce graphene-coated solid particles inside the impacting chamber; c) separating the graphene sheets from the solid carrier material particle surfaces to recover isolated graphene sheets. The method enables production of graphene sheets directly from a graphitic material without going through a chemical intercalation or oxidation procedure. The process is fast (hours as opposed to days of conventional processes), has low or no water usage, environmentally benign, cost effective, and highly scalable.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: October 3, 2023
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z Jang
  • Patent number: 11767412
    Abstract: Provided is a process for producing a polymer composite film, comprising the steps of: (a) mixing a phthalocyanine compound with a polymer or its precursor and a liquid to form a slurry and forming the slurry into a wet film on a solid substrate, wherein the polymer is preferably selected from the group consisting of polyimide, polyamide, polyoxadiazole, polybenzoxazole, polybenzobisoxazole, polythiazole, polybenzothiazole, polybenzobisthiazole, poly(p-phenylene vinylene), polybenzimidazole, polybenzobisimidazole, and combinations thereof; and (b) removing the liquid from the wet film and, in some embodiments, converting the precursor to the polymer to form the polymer composite film comprising from 0.1% to 50% by weight of the phthalocyanine compound dispersed in the polymer.
    Type: Grant
    Filed: November 12, 2021
    Date of Patent: September 26, 2023
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 11767221
    Abstract: Provided is a method of producing isolated graphene sheets directly from a carbon/graphite precursor. The method comprises: (a) providing a mass of halogenated aromatic molecules selected from halogenated petroleum heavy oil or pitch, coal tar pitch, polynuclear hydrocarbon, or a combination thereof; (b) heat treating this mass at a first temperature of 25 to 300° C. in the presence of a catalyst and optionally at a second temperature of 300-3,200° C. to form graphene domains dispersed in a disordered matrix of carbon or hydrocarbon molecules, and (c) separating and isolating the planes of hexagonal carbon atoms or fused aromatic rings to recover graphene sheets from the disordered matrix.
    Type: Grant
    Filed: February 12, 2018
    Date of Patent: September 26, 2023
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 11742475
    Abstract: Provided is particulate of an anode active material for a lithium battery, comprising one or a plurality of anode active material particles being embraced or encapsulated by a thin layer of a high-elasticity polymer having a recoverable tensile strain no less than 5%, a lithium ion conductivity no less than 10?6 S/cm at room temperature, and a thickness from 0.5 nm to 10 ?m, wherein the polymer contains an ultrahigh molecular weight (UHMW) polymer having a molecular weight from 0.5×106 to 9×106 grams/mole. The UHMW polymer is preferably selected from polyacrylonitrile, polyethylene oxide, polypropylene oxide, polyethylene glycol, polyvinyl alcohol, polyacrylamide, poly(methyl methacrylate), poly(methyl ether acrylate), a copolymer thereof, a sulfonated derivative thereof, a chemical derivative thereof, or a combination thereof.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: August 29, 2023
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Patent number: 11721832
    Abstract: Provided is an anode active material layer for a lithium battery. This layer comprises multiple particulates of an anode active material, wherein at least a particulate is composed of one or a plurality of particles of an anode active material being encapsulated by a thin layer of graphene/elastomer composite having from 0.01% to 50% by weight of graphene sheets dispersed in an elastomeric matrix material, wherein the encapsulating shell (the thin layer of composite) has a thickness from 1 nm to 10 ?m and the graphene/elastomer composite has a lithium ion conductivity from 10?7 S/cm to 10?2 S/cm and an electrical conductivity from 10?7 S/cm to 100 S/cm when measured at room temperature. The anode active material is preferably selected from Si, Ge, Sn, SnO2, SiOx, Co3O4, Mn3O4, etc., which has a specific capacity of lithium storage greater than 372 mAh/g (the theoretical lithium storage limit of graphite).
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: August 8, 2023
    Assignee: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Publication number: 20230238575
    Abstract: A hybrid solid electrolyte particulate for use in a rechargeable lithium battery cell, wherein said particulate comprises one or more than one inorganic solid electrolyte particles encapsulated by a shell of elastic polymer electrolyte wherein (i) the hybrid solid electrolyte particulate has a lithium-ion conductivity from 10?6 S/cm to 5×10?2 S/cm and both the inorganic solid electrolyte and the elastic polymer electrolyte individually have a lithium-ion conductivity no less than 10?6 S/cm; (ii) the elastic polymer electrolyte-to-inorganic solid electrolyte ratio is from 1/100 to 100/1 or the elastic polymer electrolyte shell has a thickness from 1 nm to 10 ?m; and (iii) the elastic polymer electrolyte has a recoverable elastic tensile strain from 5% to 1,000%. Also provided is a lithium-ion or lithium metal cell containing multiple hybrid solid electrolyte particulates in the anode, cathode and/or the separator. Processes for producing hybrid solid electrolyte particulates are also disclosed.
    Type: Application
    Filed: January 25, 2022
    Publication date: July 27, 2023
    Applicant: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang
  • Publication number: 20230238571
    Abstract: A hybrid solid electrolyte particulate for use in a rechargeable lithium battery cell, wherein said particulate comprises one or more than one inorganic solid electrolyte particles encapsulated by a shell of conducting polymer electrolyte wherein (i) the hybrid solid electrolyte particulate has a lithium-ion conductivity from 10?6 S/cm to 5×10?2 S/cm and both the inorganic solid electrolyte and the conducting polymer electrolyte individually have a lithium-ion conductivity no less than 10?6 S/cm; (ii) the conducting polymer electrolyte has an electron conductivity no less than 10?6 S/cm; and (iii) the conducting polymer electrolyte-to-inorganic solid electrolyte ratio is from 1/100 to 100/1 or the conducting polymer electrolyte shell has a thickness from 1 nm to 10 ?m. Also provided is a lithium-ion or lithium metal cell containing multiple hybrid solid electrolyte particulates in the anode and/or the cathode. Processes for producing hybrid solid electrolyte particulates are also disclosed.
    Type: Application
    Filed: January 27, 2022
    Publication date: July 27, 2023
    Applicant: Global Graphene Group, Inc.
    Inventors: Aruna Zhamu, Bor Z. Jang