Patents by Inventor Arvin Shmilovich

Arvin Shmilovich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140091180
    Abstract: Systems and methods for reducing the trailing vortices and lowering the noise produced by the side edges of aircraft flight control surfaces, tips of wings and winglets, and tips of rotor blades. A noise-reducing, wake-alleviating device is disclosed which incorporates an actuator and one or more air-ejecting slot-shaped openings coupled to that actuator and located on the upper and/or lower surfaces and/or the side edges of an aircraft flight control surface or the tip of a wing, winglet or blade. The actuation mechanism produces sets of small and fast-moving air jets that traverse the openings in the general streamwise direction. The actuation destabilizes the flap vortex structure, resulting in reduced intensity of trailing vortices and lower airplane noise.
    Type: Application
    Filed: December 6, 2013
    Publication date: April 3, 2014
    Applicant: THE BOEING COMPANY
    Inventors: Arvin Shmilovich, Abdollah Khodadoust
  • Patent number: 8632031
    Abstract: Systems and methods for reducing the trailing vortices and lowering the noise produced by the side edges of aircraft flight control surfaces, tips of wings and winglets, and tips of rotor blades. A noise-reducing, wake-alleviating device is disclosed which incorporates an actuator and one or more air-ejecting slot-shaped openings coupled to that actuator and located on the upper and/or lower surfaces and/or the side edges of an aircraft flight control surface or the tip of a wing, winglet or blade. The actuation mechanism produces sets of small and fast-moving air jets that traverse the openings in the general streamwise direction. The actuation destabilizes the flap vortex structure, resulting in reduced intensity of trailing vortices and lower airplane noise.
    Type: Grant
    Filed: July 8, 2011
    Date of Patent: January 21, 2014
    Assignee: The Boeing Company
    Inventors: Arvin Shmilovich, Abdollah Khodadoust
  • Patent number: 8618719
    Abstract: A power generation device that provides power to an auxiliary system on an airborne platform, includes a piezoelectric energy harvesting device and an energy storage unit, including a battery and a power conditioner. The device extracts energy generated by turbulent airflow around the platform and stores the energy to meet future power requirements. The piezoelectric energy harvesting device is located on a portion of an inner surface of an outward shell of the platform. The stand-alone power generation device is electrically connected to the auxiliary system. The stand-alone power generation device also includes a router that connects the power generation unit to the platform electrical distribution system. Excess power generated by the device may be delivered to the platform electrical distribution system for use by other platform systems.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: December 31, 2013
    Assignee: The Boeing Company
    Inventors: Arvin Shmilovich, Michael A. Carralero
  • Patent number: 8424810
    Abstract: Concepts and technologies described herein provide for a low noise aircraft wing slat system. According to one aspect of the disclosure provided herein, a cove-filled wing slat is used in conjunction with a moveable panel rotatably attached to the wing slat to provide a high lift system. The moveable panel rotates upward against the rear surface of the slat during deployment of the slat, and rotates downward to bridge a gap width between the stowed slat and the lower wing surface, completing the continuous outer mold line shape of the wing, when the cove-filled slat is retracted to the stowed position.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: April 23, 2013
    Assignee: The Boeing Company
    Inventors: Arvin Shmilovich, Yoram Yadlin
  • Patent number: 8376285
    Abstract: Active systems and methods for controlling aircraft vortices are disclosed. An apparatus in accordance with one embodiment is directed to an aircraft system that includes an airfoil having first and second oppositely facing flow surfaces and a tip. The system can further include a vortex dissipation device carried by the airfoil, with the vortex dissipation device including an orifice positioned to direct a flow of fluid outwardly from the tip, an actuator operatively coupled to the fluid flow orifice and positioned to change a manner in which flow is directed outwardly from the tip, and a controller operatively coupled to the actuator to direct the operation of the actuator. The vortex dissipation device can be activated to accelerate the rate at which vortices (e.g., wing tip vortices) dissipate after they are generated, for example, by alternately pulsing flow inwardly and outwardly through the fluid flow orifice.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: February 19, 2013
    Assignee: The Boeing Company
    Inventors: Arvin Shmilovich, Yoram Yadlin, Roger W Clark
  • Patent number: 8336828
    Abstract: An apparatus comprises a platform configured to move in a streamwise direction, an actuation unit associated with a control surface of the platform, a fluid source configured to supply an airflow to the actuation unit, and a control unit for moving an air jet across the control surface. The actuation unit is configured to form a traversing air jet pointing in the streamwise direction.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: December 25, 2012
    Assignee: The Boeing Company
    Inventors: Arvin Shmilovich, Yoram Yadlin, Roger W. Clark
  • Publication number: 20120299446
    Abstract: A power generation device that provides power to an auxiliary system on an airborne platform, includes a piezoelectric energy harvesting device and an energy storage unit, including a battery and a power conditioner. The device extracts energy generated by turbulent airflow around the platform and stores the energy to meet future power requirements. The piezoelectric energy harvesting device is located on a portion of an inner surface of an outward shell of the platform. The stand-alone power generation device is electrically connected to the auxiliary system. The stand-alone power generation device also includes a router that connects the power generation unit to the platform electrical distribution system. Excess power generated by the device may be delivered to the platform electrical distribution system for use by other platform systems.
    Type: Application
    Filed: June 28, 2012
    Publication date: November 29, 2012
    Inventors: Arvin Shmilovich, Michael A. Carralero
  • Publication number: 20120256049
    Abstract: Systems and methods for reducing the trailing vortices and lowering the noise produced by the side edges of aircraft flight control surfaces, tips of wings and winglets, and tips of rotor blades. A noise-reducing, wake-alleviating device is disclosed which incorporates an actuator and one or more air-ejecting slot-shaped openings coupled to that actuator and located on the upper and/or lower surfaces and/or the side edges of an aircraft flight control surface or the tip of a wing, winglet or blade. The actuation mechanism produces sets of small and fast-moving air jets that traverse the openings in the general streamwise direction. The actuation destabilizes the flap vortex structure, resulting in reduced intensity of trailing vortices and lower airplane noise.
    Type: Application
    Filed: July 8, 2011
    Publication date: October 11, 2012
    Applicant: THE BOEING COMPANY
    Inventors: Arvin Shmilovich, Abdollah Khodadoust
  • Patent number: 8276852
    Abstract: Concepts and technologies described herein provide for a low noise aircraft wing slat system. According to one aspect of the disclosure provided herein, a cove-filled wing slat is used in conjunction with a moveable leading edge element of an aircraft wing to provide a high lift system. The moveable leading edge element may include a one-piece or two-piece panel that retracts within the aircraft wing to accommodate the cove-filled slat in the stowed position. Upon deployment of the cove-filled slat, the moveable leading edge element deploys outward to create a continuous outer mold line shape with the wing.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: October 2, 2012
    Assignee: The Boeing Company
    Inventors: Arvin Shmilovich, Yoram Yadlin
  • Patent number: 8232706
    Abstract: A stand-alone power generation device that provides power to an auxiliary system on an airborne platform, includes a piezoelectric energy harvesting device and an energy storage unit, including a battery and a power conditioner. The device extracts energy generated by turbulent airflow around the platform and stores the energy to meet future power requirements. The piezoelectric energy harvesting device is located on a portion of an inner surface of an outward shell of the platform. The stand-alone power generation device is electrically connected to the auxiliary system. The stand-alone power generation device also includes a router that connects the power generation unit to the platform electrical distribution system. Excess power generated by the device may be delivered to the platform electrical distribution system for use by other platform systems.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: July 31, 2012
    Assignee: The Boeing Company
    Inventors: Arvin Shmilovich, Michael A. Carralero
  • Patent number: 8087618
    Abstract: A propulsion system for an aircraft includes an airfoil, an engine having an engine cowling carried by the airfoil and configured to produce exhaust gases that are predominantly directed toward an aft end of the airfoil by the engine cowling as engine exhaust, a propulsion flap carried by the airfoil and disposed aft of the engine cowling and a plurality of exhaust ejection orifices provided in the propulsion flap and adapted to receive at least a portion of the exhaust gases from the engine cowling.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: January 3, 2012
    Assignee: The Boeing Company
    Inventors: Arvin Shmilovich, Yoram Yadlin, Roger W. Clark, Robert D. Gregg, III
  • Patent number: 8033510
    Abstract: A system and method for generating lift provided by a multi-element aircraft wing are provided. The system includes a main wing element, a slat interconnected to the main wing element, and a flap interconnected to the main wing element. The system also includes at least one port defined in at least one of the slat, main wing element, and flap. In addition, the system includes at least one fluidic device operable to regulate fluid flow into and out of the at least one port to control boundary layer flow over at least one of the slat, main wing element, and flap.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: October 11, 2011
    Assignee: The Boeing Company
    Inventors: Arvin Shmilovich, Yoram Yadlin, Roger W. Clark
  • Publication number: 20110240803
    Abstract: Concepts and technologies described herein provide for a low noise aircraft wing slat system. According to one aspect of the disclosure provided herein, a cove-filled wing slat is used in conjunction with a moveable leading edge element of an aircraft wing to provide a high lift system. The moveable leading edge element may include a one-piece or two-piece panel that retracts within the aircraft wing to accommodate the cove-filled slat in the stowed position. Upon deployment of the cove-filled slat, the moveable leading edge element deploys outward to create a continuous outer mold line shape with the wing.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 6, 2011
    Inventors: Arvin Shmilovich, Yoram Yadlin
  • Patent number: 8016244
    Abstract: Active systems and methods for controlling aircraft vortices are disclosed. An apparatus in accordance with one embodiment is directed to an aircraft system that includes an airfoil having first and second oppositely facing flow surfaces and a tip. The system can further include a vortex dissipation device carried by the airfoil, with the vortex dissipation device including an orifice positioned to direct a flow of fluid outwardly from the tip, an actuator operatively coupled to the fluid flow orifice and positioned to change a manner in which flow is directed outwardly from the tip, and a controller operatively coupled to the actuator to direct the operation of the actuator. The vortex dissipation device can be activated to accelerate the rate at which vortices (e.g., wing tip vortices) dissipate after they are generated, for example, by alternately pulsing flow inwardly and outwardly through the fluid flow orifice.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: September 13, 2011
    Assignee: The Boeing Company
    Inventors: Arvin Shmilovich, Yoram Yadlin, Roger W. Clark
  • Publication number: 20110108672
    Abstract: An apparatus comprises a platform configured to move in a streamwise direction, an actuation unit associated with a control surface of the platform, a fluid source configured to supply an airflow to the actuation unit, and a control unit for moving an air jet across the control surface. The actuation unit is configured to form a traversing air jet pointing in the streamwise direction.
    Type: Application
    Filed: November 12, 2009
    Publication date: May 12, 2011
    Applicant: The Boeing Company
    Inventors: Arvin Shmilovich, Yoram Yadlin, Roger W. Clark
  • Patent number: 7878458
    Abstract: Lift produced by an airfoil of an aircraft is increased by suppressing fluid detachment from the surface of the airfoil. An engine cowling extends outwardly from the surface of the airfoil that has an exit plane configured for directing exhaust gases toward a rear of the aircraft. Fences extending outwardly from the surface and proximate to the exit plane of the engine cowling are configured to guide the exhaust gases along at least a portion of the airfoil surface, thereby restricting spanwise movement of the gases and increasing the Coanda Effect exhibited by the gases, thereby increasing the amount of lift produced along the surface of the airfoil. Such techniques may be used in short take-off and landing (STOL) aircraft.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: February 1, 2011
    Assignee: The Boeing Company
    Inventors: Arvin Shmilovich, Yoram Yadlin, Robert D. Gregg, III, Roger W. Clark
  • Patent number: 7823840
    Abstract: Coanda Effect and lift produced along a surface of an airfoil are increased by ducting compressed fluid from the engine to the surface of the airfoil. An engine produces exhaust gases that are predominantly directed toward an aft end of the aircraft by a cowling or other structure as an exhaust plume. One or more internal ducts extend from the engine to the surface of the airfoil to thereby transmit a compressed fluid from the engine to the surface in order to suppress flow separation along the surface, thereby causing the engine exhaust flow to remain attached to the surface over a wider span. Such structures and techniques may find particular use in aircraft designed to exploit upper surface blowing (USB) techniques and structures for short takeoff and landing (STOL) performance.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: November 2, 2010
    Assignee: The Boeing Company
    Inventors: Arvin Shmilovich, Yoram Yadlin, Robert D. Gregg, III, Roger W. Clark
  • Patent number: 7798423
    Abstract: Integrated engine exhaust systems and techniques for operating integrated engine exhaust systems are disclosed. In one embodiment, a propulsion system includes an engine installation configured to be mounted on a wing assembly of an aircraft. The engine installation includes an engine, and an exhaust system operatively coupled to the engine. The exhaust system includes at least one nozzle to exhaust an exhaust flow from the engine. The nozzle includes a variable portion configured to vary an exit aperture of the nozzle from a first shape to a second shape to change a flowfield shape of at least a portion of the nozzle flowfield proximate the wing assembly, thereby reducing at least one of drag and thermal loading on the wing assembly. In a further embodiment, the exhaust system includes an inner nozzle that exhausts a core exhaust flow, and an outer nozzle that exhausts a secondary exhaust flow, the outer nozzle having the variable portion configured to vary the exit aperture of the outer nozzle.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: September 21, 2010
    Assignee: The Boeing Company
    Inventors: Arvin Shmilovich, Yoram Yadlin, David M. Smith, Roger W. Clark
  • Publication number: 20100176692
    Abstract: A stand-alone power generation device that provides power to an auxiliary system on an airborne platform, includes a piezoelectric energy harvesting device and an energy storage unit, including a battery and a power conditioner. The device extracts energy generated by turbulent airflow around the platform and stores the energy to meet future power requirements. The piezoelectric energy harvesting device is located on a portion of an inner surface of an outward shell of the platform. The stand-alone power generation device is electrically connected to the auxiliary system. The stand-alone power generation device also includes a router that connects the power generation unit to the platform electrical distribution system. Excess power generated by the device may be delivered to the platform electrical distribution system for use by other platform systems.
    Type: Application
    Filed: January 9, 2009
    Publication date: July 15, 2010
    Inventors: Arvin Shmilovich, Michael A. Carralero
  • Patent number: 7726609
    Abstract: Aircraft exhaust systems and methods are disclosed. In one embodiment, an integrated propulsion assembly includes a wing assembly having an upper surface and a lower surface, and a propulsion unit at least partially disposed within the wing assembly. An exhaust system is configured to conduct an exhaust flow emanating from the propulsion unit to an exhaust aperture. The exhaust aperture is positioned proximate a trailing edge of the wing assembly, and has an aspect ratio of at least five. In further embodiments, the wing assembly includes a flap member moveably coupled along a trailing edge portion of the wing assembly, and the exhaust aperture is configured to direct the exhaust flow over at least a portion of the flap member.
    Type: Grant
    Filed: March 16, 2007
    Date of Patent: June 1, 2010
    Assignee: The Boeing Company
    Inventors: Arvin Shmilovich, Yoram Yadlin, Roger W. Clark