Patents by Inventor Arvind A. Kumar

Arvind A. Kumar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12217787
    Abstract: A method, apparatus and system. The method includes: performing one or more training iterations to tune a target clock signal frequency to be applied at a memory device, each of the one or more training iterations including: causing a modified clock signal frequency to be applied at the memory device; and decoding a quality feedback message from the memory device including an indication of a performance of the clock signal frequency at the memory device; and in response to a determination that the performance of the clock signal frequency falls within a target performance range of the memory device and that the clock signal frequency is below the target clock signal frequency, performing a subsequent training iteration of the one or more training iterations, and otherwise causing application at the memory device, during a memory operation, of a highest clock signal frequency corresponding to a training iteration for which performance of the clock signal was within the target performance range.
    Type: Grant
    Filed: June 16, 2021
    Date of Patent: February 4, 2025
    Assignee: Intel Corporation
    Inventors: Arvind A. Kumar, James Alexander McCall, Bill H. Nale, John R. Goles, Dean-Dexter R. Eugenio
  • Patent number: 12197357
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: January 14, 2025
    Assignee: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Patent number: 12189550
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
    Type: Grant
    Filed: July 5, 2023
    Date of Patent: January 7, 2025
    Assignee: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Publication number: 20240012772
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
    Type: Application
    Filed: July 5, 2023
    Publication date: January 11, 2024
    Applicant: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Patent number: 11741030
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
    Type: Grant
    Filed: December 25, 2020
    Date of Patent: August 29, 2023
    Assignee: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Publication number: 20220114122
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
    Type: Application
    Filed: December 20, 2021
    Publication date: April 14, 2022
    Applicant: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Patent number: 11269793
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: March 8, 2022
    Assignee: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Publication number: 20210312972
    Abstract: A method, apparatus and system. The method includes: performing one or more training iterations to tune a target clock signal frequency to be applied at a memory device, each of the one or more training iterations including: causing a modified clock signal frequency to be applied at the memory device; and decoding a quality feedback message from the memory device including an indication of a performance of the clock signal frequency at the memory device; and in response to a determination that the performance of the clock signal frequency falls within a target performance range of the memory device and that the clock signal frequency is below the target clock signal frequency, performing a subsequent training iteration of the one or more training iterations, and otherwise causing application at the memory device, during a memory operation, of a highest clock signal frequency corresponding to a training iteration for which performance of the clock signal was within the target performance range.
    Type: Application
    Filed: June 16, 2021
    Publication date: October 7, 2021
    Inventors: Arvind A. Kumar, James Alexander McCall, Bill H. Nale, John R. Goles, Dean-Dexter R. Eugenio
  • Publication number: 20210117350
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
    Type: Application
    Filed: December 25, 2020
    Publication date: April 22, 2021
    Applicant: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Publication number: 20200356502
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration.
    Type: Application
    Filed: July 23, 2020
    Publication date: November 12, 2020
    Applicant: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Publication number: 20190391939
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration.
    Type: Application
    Filed: February 25, 2019
    Publication date: December 26, 2019
    Applicant: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Patent number: 10248591
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: April 2, 2019
    Assignee: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert H. Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Publication number: 20180095927
    Abstract: A serial data link is to be adapted during initialization of the link. Adaptation of the link is to include receiving a pseudorandom binary sequence (PRBS) from a remote agent, analyzing the PRBS to identify characteristics of the data link, and generating metric data describing the characteristics.
    Type: Application
    Filed: November 22, 2017
    Publication date: April 5, 2018
    Applicant: Intel Corporation
    Inventors: Venkatraman Iyer, Darren S. Jue, Rahul C. Shah, Arvind A. Kumar
  • Patent number: 9817054
    Abstract: Methods and apparatus relating to electrical margining of multi-parameter high-speed interconnect links with multi-sample probing are described. In one embodiment, logic is provided to generate one or more parameter values, corresponding to an electrical operating margin of an interconnect. The one or more parameter values are generated based on a plurality of eye observation sets to be detected in response to operation of the interconnect in accordance with a plurality of parameter sets (e.g., by using quantitative optimization techniques). In turn, the interconnect is to be operated at the one or more parameter values if it is determined that the one or more parameter values cause the interconnect to operate at an optimum level relative to an operation of the interconnect in accordance with one or more less optimum parameter levels. Other embodiments are also disclosed and claimed.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: November 14, 2017
    Assignee: Intel Corporation
    Inventors: Thanunathan Rangarajan, Shreesh Chhabbi, Arvind A. Kumar, Venkatraman Iyer
  • Publication number: 20170109315
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
    Type: Application
    Filed: December 28, 2016
    Publication date: April 20, 2017
    Applicant: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert H. Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Patent number: 9626321
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: April 18, 2017
    Assignee: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Patent number: 9448663
    Abstract: Technologies for touch point detection include a computing device configured to receive input frames from a touch screen, identify touch point centroids and cluster boundaries, and track touch points. The computing device may group cells of the input frame into blocks. Using a processor graphics, the computing device may dispatch one thread per block to identify local maxima of the input frame and merge centroids within a touch distance threshold. The computing device may dispatch one thread per centroid to detect cluster boundaries. The computing device may dispatch one thread per previously identified touch point to assign an identifier of a previously tracked touch point to a touch point within a tracking distance threshold, remove duplicate identifiers, and assign unassigned identifiers to closest touch points. The computing device may dispatch one thread per block to assign unique identifiers to each unassigned touch point. Other embodiments are described and claimed.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: September 20, 2016
    Assignee: Intel Corporation
    Inventors: Chaitanya R. Gandra, Balaji Vembu, Arvind A. Kumar, Nilesh V. Shah
  • Publication number: 20160098148
    Abstract: Technologies for touch point detection include a computing device configured to receive input frames from a touch screen, identify touch point centroids and cluster boundaries, and track touch points. The computing device may group cells of the input frame into blocks. Using a processor graphics, the computing device may dispatch one thread per block to identify local maxima of the input frame and merge centroids within a touch distance threshold. The computing device may dispatch one thread per centroid to detect cluster boundaries. The computing device may dispatch one thread per previously identified touch point to assign an identifier of a previously tracked touch point to a touch point within a tracking distance threshold, remove duplicate identifiers, and assign unassigned identifiers to closest touch points. The computing device may dispatch one thread per block to assign unique identifiers to each unassigned touch point. Other embodiments are described and claimed.
    Type: Application
    Filed: June 28, 2013
    Publication date: April 7, 2016
    Inventors: Chaitanya R. GANDRA, Balaji VEMBU, Arvind A. KUMAR, Nilesh V. SHAH
  • Publication number: 20140112339
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration.
    Type: Application
    Filed: October 22, 2013
    Publication date: April 24, 2014
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul C. Shah, Sitaraman V. Iyer, Bill Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Publication number: 20140002102
    Abstract: Methods and apparatus relating to electrical margining of multi-parameter high-speed interconnect links with multi-sample probing are described. In one embodiment, logic is provided to generate one or more parameter values, corresponding to an electrical operating margin of an interconnect. The one or more parameter values are generated based on a plurality of eye observation sets to be detected in response to operation of the interconnect in accordance with a plurality of parameter sets (e.g., by using quantitative optimization techniques). In turn, the interconnect is to be operated at the one or more parameter values if it is determined that the one or more parameter values cause the interconnect to operate at an optimum level relative to an operation of the interconnect in accordance with one or more less optimum parameter levels. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: December 28, 2012
    Publication date: January 2, 2014
    Inventors: Thanunathan Rangarajan, Shreesh Chhabbi, Arvind A. Kumar, Venkatraman Iyer