Patents by Inventor Arvind Kannan

Arvind Kannan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11897768
    Abstract: Systems for producing hydrogen gas for local distribution, consumption, and/or storage, and related devices and methods are disclosed herein. A representative system includes a pyrolysis reactor that can be coupled to a supply of reaction material that includes a hydrocarbon. The reactor includes one or more flow channels positioned to transfer heat to the reaction material to convert the hydrocarbon into an output that includes hydrogen gas and carbon particulates. The system also includes a carbon separation system operably coupled to the pyrolysis reactor to separate the hydrogen gas the carbon particulates in the output. In various embodiments, the system also includes components to locally consume the filtered hydrogen gas.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: February 13, 2024
    Assignee: Modern Hydrogen, Inc.
    Inventors: Justin B. Ashton, Roelof E. Groenewald, Kevin J. Hughes, Arvind Kannan, William Kokonaski, Max N. Mankin, Tony S. Pan, Lowell L Wood, John J. Lorr, Amit Goyal, Guido Radaelli, Vikram Seshadri
  • Patent number: 11205564
    Abstract: Disclosed embodiments include vacuum electronic devices, methods of operating a vacuum electronic device, and methods of fabricating a vacuum electronic device. In a non-limiting embodiment, a vacuum electronics device includes a cathode and an anode. At least one focus grid is disposed between the cathode and the anode, and the at least one focus grid is physically disconnected from the cathode. The at least one acceleration grid is disposed between the cathode and the anode, and the at least one acceleration grid is further disposed adjacent the at least one focus grid. The at least one acceleration grid is physically disconnected from the cathode.
    Type: Grant
    Filed: May 22, 2018
    Date of Patent: December 21, 2021
    Assignee: MODERN ELECTRON, INC.
    Inventors: Stephen E. Clark, Richard M. Gorski, Arvind Kannan, Andrew T. Koch, Andrew R. Lingley, Hsin-I Lu, Max N. Mankin, Tony S. Pan, Jason M. Parker
  • Publication number: 20210380407
    Abstract: Systems for producing hydrogen gas for local distribution, consumption, and/or storage, and related devices and methods are disclosed herein. A representative system includes a pyrolysis reactor that can be coupled to a supply of reaction material that includes a hydrocarbon. The reactor includes one or more flow channels positioned to transfer heat to the reaction material to convert the hydrocarbon into an output that includes hydrogen gas and carbon particulates. The system also includes a carbon separation system operably coupled to the pyrolysis reactor to separate the hydrogen gas the carbon particulates in the output. In various embodiments, the system also includes components to locally consume the filtered hydrogen gas.
    Type: Application
    Filed: June 2, 2021
    Publication date: December 9, 2021
    Inventors: Justin B. Ashton, Roelof E. Groenewald, Kevin J. Hughes, Arvind Kannan, William Kokonaski, Max N. Mankin, Tony S. Pan, Levi D. Rodriguez, Lowell L. Wood, John J. Lorr, Amit Goyal, Guido Radaelli, Vikram Seshadri
  • Publication number: 20210111011
    Abstract: Various disclosed embodiments include thermionic energy converters and electronic circuitry for generating pulses for igniting plasma in a hermetic package of a thermionic energy converter. In various embodiments, an illustrative thermionic energy converter includes a hermetic package charged with a non-cesium gas additive. The hermetic package is configured to route into the hermetic package pulses for igniting plasma in the hermetic package. A cesium reservoir is disposed in the hermetic package. A cathode is disposed in the hermetic package and an anode is disposed in the hermetic package.
    Type: Application
    Filed: October 7, 2020
    Publication date: April 15, 2021
    Inventors: Stephen E. Clark, Roelof E. Groenewald, Arvind Kannan, Andrew T. Koch, Hsin-I Lu, Alexander J. Pearse, Peter J. Scherpelz
  • Publication number: 20210057123
    Abstract: Various disclosed embodiments include elements for mitigating electron reflection in a vacuum electronic device, vacuum electronic devices that incorporate elements for mitigating electron reflection, and methods of fabricating elements for reducing reflection of electrons off an electrode. An illustrative electrode assembly includes an electrode. Elements are configured to reduce reflection of electrons off the electrode.
    Type: Application
    Filed: August 20, 2020
    Publication date: February 25, 2021
    Inventors: Stephen E. Clark, Roelof E. Groenewald, Arvind Kannan, Hsin-I Lu, Daniel J. Merthe, Jason M. Parker, Alexander J. Pearse, Peter J. Scherpelz, Max N. Mankin, Tony S. Pan
  • Patent number: 10658144
    Abstract: Disclosed embodiments include vacuum electronics devices and methods of fabricating a vacuum electronics device. In a non-limiting embodiment, a vacuum electronics device includes: an electrode; a plurality of grid supports disposed on the electrode, each of the plurality of grid supports having a first width; and a plurality of grid lines, each of the plurality of grid lines being supported on an associated one of the plurality of grid supports, each of the plurality of grid lines having a second width that is wider than the first width.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: May 19, 2020
    Assignee: Modern Electron, LLC
    Inventors: Stephen E. Clark, Chloe A. M. Fabien, Gary D. Foley, Arvind Kannan, Andrew T. Koch, Andrew R. Lingley, Hsin-I Lu, Max N. Mankin, Tony S. Pan, Jason M. Parker, Peter J. Scherpelz, Yong Sun, Chuteng Zhou
  • Publication number: 20190371582
    Abstract: Disclosed embodiments include vacuum electronic devices, methods of operating a vacuum electronic device, and methods of fabricating a vacuum electronic device. In a non-limiting embodiment, a vacuum electronics device includes a cathode and an anode. At least one focus grid is disposed between the cathode and the anode, and the at least one focus grid is physically disconnected from the cathode. The at least one acceleration grid is disposed between the cathode and the anode, and the at least one acceleration grid is further disposed adjacent the at least one focus grid. The at least one acceleration grid is physically disconnected from the cathode.
    Type: Application
    Filed: May 22, 2018
    Publication date: December 5, 2019
    Applicant: Modern Electron, LLC
    Inventors: Stephen E. Clark, Richard M. Gorski, Arvind Kannan, Andrew T. Koch, Andrew R. Lingley, Hsin-I Liu, Max N. Mankin, Tony S. Pan, Jason M. Parker
  • Patent number: 10370653
    Abstract: Microcavity arrays and methods for quantitative biochemical and biophysical analysis of populations of biological variants. Examples include high-throughput analysis of cells and protein products use a range of fluorescent assays, including binding-affinity measurement and time-resolved enzyme assays. Laser-based extraction of microcavity contents.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: August 6, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Jennifer R. Cochran, Thomas M. Baer, Bob Chen, Spencer Caleb Alford, Arvind Kannan, Sungwon Lim, Ivan Dimov
  • Publication number: 20190043685
    Abstract: Disclosed embodiments include vacuum electronics devices and methods of fabricating a vacuum electronics device. In a non-limiting embodiment, a vacuum electronics device includes: an electrode; a plurality of grid supports disposed on the electrode, each of the plurality of grid supports having a first width; and a plurality of grid lines, each of the plurality of grid lines being supported on an associated one of the plurality of grid supports, each of the plurality of grid lines having a second width that is wider than the first width.
    Type: Application
    Filed: July 20, 2018
    Publication date: February 7, 2019
    Applicant: Modern Electron, LLC
    Inventors: Stephen E. Clark, Chloe A. M. Fabien, Gary D. Foley, Arvind Kannan, Andrew T. Koch, Andrew R. Lingley, Hsin-I Lu, Max N. Mankin, Tony S. Pan, Jason M. Parker, Peter J. Scherpelz, Yong Sun, Chuteng Zhou
  • Publication number: 20160244749
    Abstract: Microcavity arrays and methods for quantitative biochemical and biophysical analysis of populations of biological variants. Examples include high-throughput analysis of cells and protein products use a range of fluorescent assays, including binding-affinity measurement and time-resolved enzyme assays. Laser-based extraction of microcavity contents.
    Type: Application
    Filed: February 22, 2016
    Publication date: August 25, 2016
    Inventors: Jennifer R. Cochran, Thomas M. Baer, Bob Chen, Spencer Caleb Alford, Arvind Kannan, Sungwon Lim, Ivan Dimov