Patents by Inventor Arvind Rajpal

Arvind Rajpal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10100114
    Abstract: The present invention provides antibodies that specifically bind to trophoblast cell-surface antigen-2 (Trop-2). The invention further provides antibody conjugates comprising such antibodies, antibody encoding nucleic acids, and methods of obtaining such antibodies. The invention further relates to therapeutic methods for use of these antibodies and Trop-2 antibody conjugates for the treatment of a condition associated with Trop-2 expression (e.g., cancer), such as colon, esophageal, gastric, head and neck, lung, ovarian, or pancreatic cancer.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: October 16, 2018
    Assignee: RINAT NEUROSCIENCE CORP.
    Inventors: Shu-Hui Liu, Wei-Hsien Ho, Pavel Strop, Magdalena Grazyna Dorywalska, Arvind Rajpal, David Louis Shelton, Thomas-Toan Tran
  • Publication number: 20180237534
    Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to OX40. Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.
    Type: Application
    Filed: May 26, 2016
    Publication date: August 23, 2018
    Inventors: Zhehong CAI, Indrani CHAKRABORTY, Marie-Michelle Navarro GARCIA, Thomas D. KEMPE, Alan J. KORMAN, Alexander T. KOZHICH, Hadia LEMAR, Mark MAURER, Christina Maria MILBURN, Michael QUIGLEY, Maria RODRIGUEZ, Xiang SHAO, Mohan SRINIVASAN, Brenda L. STEVENS, Kent THUDIUM, Susan Chien-Szu WONG, Jochem GOKEMEIJER, Xi-Tao WANG, Han CHANG, Christine HUANG, Maria JURE-KUNKEL, Zheng YANG, Yan FENG, Patrick GUIRNALDA, Nils LONBERG, Bryan C. BARNHART, Aaron P. YAMNIUK, Karla A. HENNING, Michelle Minhua HAN, Ming LEI, Liang SCHWEIZER, Sandra V. HATCHER, Arvind RAJPAL, Praveen AANUR, Mark J. SELBY
  • Patent number: 10040860
    Abstract: The present invention relates to antibodies, e.g., full length antibodies or antigen binding fragments thereof, that specifically bind to BCMA (B-Cell Maturation Antigen) and/or CD3 (Cluster of Differentiation 3). The invention also relates to antibody conjugates (e.g., antibody-drug-conjugates) comprising the BCMA antibodies, compositions comprising the BCMA antibodies, and methods of using the BCMA antibodies and their conjugates for treating conditions associated with cells expressing BCMA (e.g., cancer or autoimmune disease). The invention further relates to heteromultimeric antibodies that specifically bind to CD3 and a tumor cell antigen, (e.g., bispecific antibodies that specifically bind to CD3 and BCMA). Compositions comprising such heteromultimeric antibodies, methods for producing and purifying such heterodimeric antibodies, and their use in diagnostics and therapeutics are also provided.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: August 7, 2018
    Assignee: PFIZER INC.
    Inventors: Tracy Chia-Chien Kuo, Javier Fernando Chaparro Riggers, Wei Chen, Amy Shaw-Ru Chen, Edward Derrick Pascua, Thomas John Van Blarcom, Leila Marie Boustany, Weihsien Ho, Yik Andy Yeung, Pavel Strop, Arvind Rajpal
  • Publication number: 20180171018
    Abstract: The present invention relates to antibodies, e.g., full length antibodies or antigen binding fragments thereof, that specifically bind to BCMA (B-Cell Maturation Antigen) and/or CD3 (Cluster of Differentiation 3). The invention also relates to antibody conjugates (e.g., antibody-drug-conjugates) comprising the BCMA antibodies, compositions comprising the BCMA antibodies, and methods of using the BCMA antibodies and their conjugates for treating conditions associated with cells expressing BCMA (e.g., cancer or autoimmune disease). The invention further relates to heteromultimeric antibodies that specifically bind to CD3 and a tumor cell antigen, (e.g., bispecific antibodies that specifically bind to CD3 and BCMA). Compositions comprising such heteromultimeric antibodies, methods for producing and purifying such heterodimeric antibodies, and their use in diagnostics and therapeutics are also provided.
    Type: Application
    Filed: January 23, 2018
    Publication date: June 21, 2018
    Applicant: PFIZER INC.
    Inventors: Tracy Chia-Chien KUO, Javier Fernando CHAPARRO RIGGERS, Wei CHEN, Amy Shaw-Ru CHEN, Edward Derrick PASCUA, Thomas John VAN BLARCOM, Leila Marie BOUSTANY, Weihsien HO, Yik Andy YEUNG, Pavel STROP, Arvind RAJPAL
  • Patent number: 9969809
    Abstract: The present invention relates to antibodies, e.g., full length antibodies or antigen binding fragments thereof, that specifically bind to BCMA (B-Cell Maturation Antigen) and/or CD3 (Cluster of Differentiation 3). The invention also relates to antibody conjugates (e.g., antibody-drug-conjugates) comprising the BCMA antibodies, compositions comprising the BCMA antibodies, and methods of using the BCMA antibodies and their conjugates for treating conditions associated with cells expressing BCMA (e.g., cancer or autoimmune disease). The invention further relates to heteromultimeric antibodies that specifically bind to CD3 and a tumor cell antigen, (e.g., bispecific antibodies that specifically bind to CD3 and BCMA). Compositions comprising such heteromultimeric antibodies, methods for producing and purifying such heterodimeric antibodies, and their use in diagnostics and therapeutics are also provided.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: May 15, 2018
    Assignee: PFIZER INC.
    Inventors: Tracy Chia-Chien Kuo, Javier Fernando Chaparro Riggers, Wei Chen, Amy Shaw-Ru Chen, Edward Derrick Pascua, Thomas John Van Blarcom, Leila Marie Boustany, Weihsien Ho, Yik Andy Yeung, Pavel Strop, Arvind Rajpal
  • Publication number: 20180057600
    Abstract: The present disclosure provides isolated binding molecules that bind to the human OX40R, nucleic acid molecules encoding an amino acid sequence of the binding molecules, vectors comprising the nucleic acid molecules, host cells containing the vectors, methods of making the binding molecules, pharmaceutical compositions containing the binding molecules, and methods of using the binding molecules or compositions.
    Type: Application
    Filed: November 8, 2017
    Publication date: March 1, 2018
    Applicants: Pfizer Inc., Bristol-Myers Squibb Company
    Inventors: Jing MIN, Yanli Wu, Rory F. Finn, Barrett R. Thiele, Wei Liao, Ronald P. Gladue, Arvind Rajpal, Timothy J. Paradis, Peter Brams, Brigitte Devaux, Yi Wu, Kristopher Toy, Heidi N. Leblanc, Haichun Huang
  • Publication number: 20180051089
    Abstract: The present invention relates to a TCR KO—or TCR KO and dCK KO—engineered immune cells expressing a Chimeric Antigen Receptors (CAR) specific for CD123 that is a recombinant chimeric protein able to redirect immune cell specificity and reactivity toward CD123-expressing cells, and more particularly in which extracellular ligand binding is a scFV derived from a CD123 monoclonal antibody, conferring specific immunity against CD123 positive cells. The engineered immune cells endowed with such CD123 CARs are particularly suited for treating relapse refractory AML and blastic plasmacytoid dendritic cell neoplasm and for use as a treatment before bone marrow transplantation.
    Type: Application
    Filed: January 25, 2016
    Publication date: February 22, 2018
    Inventors: Roman GALETTO, Barbara Johnson SASU, Arvind RAJPAL, Philippe DUCHATEAU, Alexandre JUILLERAT, Julien VALTON, Mathieu SIMON
  • Publication number: 20180044399
    Abstract: The invention relates to an inhibitory chimeric antigen receptor (N-CAR) comprising an extracellular domain comprising an antigen binding domain, a transmembrane domain, and, an intracellular domain wherein the intracellular domain comprises an Immunoreceptor Tyrosine-based Switch Motif ITSM, wherein said ITSM is a sequence of amino acid TX1YX2X3X4, wherein X1 is an amino acid X2 is an amino acid X3 is an amino acid and X4 is V or
    Type: Application
    Filed: November 9, 2015
    Publication date: February 15, 2018
    Applicants: Rinat Neuroscience Corp., Cellectis
    Inventors: Arvind RAJPAL, Shobha Chowdary POTLURI, Laurent POIROT, Alexandre JUILLERAT, Thomas Charles PERTEL, Donna Marie STONE, Barbra Johnson SASU
  • Publication number: 20180009895
    Abstract: The present invention relates to Chimeric Antigen Receptors (CAR) that are recombinant chimeric proteins able to redirect immune cell specificity and reactivity toward CLL1 positive cells. The engineered immune cells endowed with such CARs are particularly suited for immunotherapy for treating cancer, in particular leukemia.
    Type: Application
    Filed: January 25, 2016
    Publication date: January 11, 2018
    Inventors: Julianne SMITH, Julien VALTON, Philippe DUCHATEAU, Alexandre JUILLERAT, Arvind RAJPAL, Barbra Johnson SASU
  • Publication number: 20180002435
    Abstract: A polypeptide encoding a chimeric antigen receptor (CAR) comprising at least one extracellular binding domain that comprises a scFv formed by at least a VH chain and a VL chain specific to an antigen, wherein said extracellular binding domain comprises at least one mAb-specific epitope.
    Type: Application
    Filed: January 25, 2016
    Publication date: January 4, 2018
    Inventors: Barbara Johnson SASU, Arvind RAJPAL, Philippe DUCHATEAU, Alexandre JUILLERAT, Julien VALTON
  • Publication number: 20180002427
    Abstract: The present invention relates to a new generation of chimeric antigen receptors (CAR) referred to as multi-chain CARs, which are made specific to the antigen CLL1. Such CARs aim to redirect immune cell specificity and reactivity toward malignant cells expressing the tumor antigen CLL1. The alpha, beta and gamma polypeptides composing these CARs are designed to assemble in juxtamembrane position, which forms flexible architecture closer to natural receptors, that confers optimal signal transduction. The invention encompasses the polynucleotides, vectors encoding said multi-chain CAR and the isolated cells expressing them at their surface, in particularly for their use in immunotherapy. The invention opens the way to efficient adoptive immunotherapy strategies for treating cancer, especially leukemia.
    Type: Application
    Filed: January 25, 2016
    Publication date: January 4, 2018
    Inventors: Julianne SMITH, Julien VALTON, Philippe DUCHATEAU, Alexandre JUILLERAT, Arvind RAJPAL, Barbra Johnson SASU
  • Publication number: 20180000914
    Abstract: The present invention relates to Chimeric Antigen Receptors (CAR) that are recombinant chimeric proteins able to redirect immune cell specificity and reactivity toward selected membrane antigens, and more particularly in which extracellular ligand binding is a scFV derived from an anti-HSP70 monoclonal antibody, conferring specific immunity against HSP70 positive cells. The engineered immune cells endowed with such CARs are particularly suited for treating in particular leukemia.
    Type: Application
    Filed: January 25, 2016
    Publication date: January 4, 2018
    Inventors: Julien VALTON, Philippe DUCHATEAU, Alexandre JUILLERAT, Arvind RAJPAL, Barbra Johnson SASU, Julianne SMITH
  • Patent number: 9840562
    Abstract: The present disclosure provides isolated binding molecules that bind to the human OX40R, nucleic acid molecules encoding an amino acid sequence of the binding molecules, vectors comprising the nucleic acid molecules, host cells containing the vectors, methods of making the binding molecules, pharmaceutical compositions containing the binding molecules, and methods of using the binding molecules or compositions.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: December 12, 2017
    Assignees: Bristol-Myers Squibb Company, Pfizer Inc.
    Inventors: Jing Min, Yanli Wu, Rory F. Finn, Barrett R. Thiele, Wei Liao, Ronald P. Gladue, Arvind Rajpal, Timothy J. Paradis, Peter Brams, Brigitte Devaux, Yi Wu, Kristopher Toy, Heidi N. LeBlanc, Haichun Huang
  • Publication number: 20170313787
    Abstract: The present invention provides engineered polypeptide conjugates (e.g., antibody-drug-conjugates, toxin-(biocompatible polymer) conjugates, antibody-(biocompatible polymer) conjugates, and bispecific antibodies) comprising acyl donor glutamine-containing tags and amine donor agents. In one aspect, the invention provides an engineered Fc-containing polypeptide conjugate comprising the formula (Fc-containing polypeptide)-T-A, wherein T is an acyl donor glutamine-containing tag engineered at a specific site or comprises an endogenous glutamine made reactive by the Fc-containing polypeptide engineering, wherein A is an amine donor agent, and wherein the amine donor agent is site-specifically conjugated to the acyl donor glutamine-containing tag or the endogenous glutamine. The invention also provides methods of making engineered polypeptide conjugates using transglutaminase.
    Type: Application
    Filed: May 11, 2017
    Publication date: November 2, 2017
    Applicants: PFIZER INC., RINAT NEUROSCIENCE CORP.
    Inventors: Pavel STROP, Magdalena Grazyna DORYWALSKA, Arvind RAJPAL, David SHELTON, Shu-Hui LIU, Jaume PONS, Russell DUSHIN
  • Patent number: 9676871
    Abstract: The present invention provides engineered polypeptide conjugates (e.g., antibody-drug-conjugates, toxin-(biocompatible polymer) conjugates, antibody-(biocompatible polymer) conjugates, and bispecific antibodies) comprising acyl donor glutamine-containing tags and amine donor agents. In one aspect, the invention provides an engineered Fc-containing polypeptide conjugate comprising the formula (Fc-containing polypeptide)-T-A, wherein T is an acyl donor glutamine-containing tag engineered at a specific site or comprises an endogenous glutamine made reactive by the Fc-containing polypeptide engineering, wherein A is an amine donor agent, and wherein the amine donor agent is site-specifically conjugated to the acyl donor glutamine-containing tag or the endogenous glutamine. The invention also provides methods of making engineered polypeptide conjugates using transglutaminase.
    Type: Grant
    Filed: November 3, 2011
    Date of Patent: June 13, 2017
    Assignees: PFIZER INC., RINAT NEUROSCIENCE CORP.
    Inventors: Pavel Strop, Magdalena Grazyna Dorywalska, Arvind Rajpal, David Shelton, Shu-Hui Liu, Jaume Pons, Russell Dushin
  • Publication number: 20170058054
    Abstract: The present invention relates to engineered heteromultimeric proteins, and more specifically, to methods for producing and purifying heterodimeric proteins, such as bispecific antibodies and other heterodimeric proteins comprising immunoglubulin-like hinge sequences. Methods for producing and purifying such engineered heterodimeric proteins and their use in diagnostics and therapeutics are also provided.
    Type: Application
    Filed: November 14, 2016
    Publication date: March 2, 2017
    Applicant: RINAT NEUROSCIENCE CORP.
    Inventors: Weihsien HO, Jaume PONS, Arvind RAJPAL, Pavel STROP
  • Publication number: 20170043033
    Abstract: The present invention provides transglutaminase-mediated antibody-drug conjugates with high anti-body-drug ratio (DAR) comprising 1) glutamine-containing tags, endogenous glutamines, and/or endogenous glutamines made reactive by antibody engineering or an engineered transglutaminase (e.g., with altered substrate specifity); and 2) amine donor agents comprising amine donor units, linkers, and agent moieties, wherein the DAR is at least about 5. The invention also provides methods of making and methods of using such higher drug loaded antibody-drug conjugates.
    Type: Application
    Filed: April 21, 2015
    Publication date: February 16, 2017
    Applicants: RINAT NEUROSCIENCE CORP., PFIZER INC.
    Inventors: Pavel STROP, Katherine Anne DELARIA, Magdalena DORYWALSKA, Davide Luciano FOLETTI, Russell George DUSHIN, David Louis SHELTON, Arvind RAJPAL
  • Patent number: 9527926
    Abstract: The present invention relates to engineered heteromultimeric proteins, and more specifically, to methods for producing and purifying heterodimeric proteins, such as bispecific antibodies and other heterodimeric proteins comprising immunoglobulin-like hinge sequences. Methods for producing and purifying such engineered heterodimeric proteins and their use in diagnostics and therapeutics are also provided.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: December 27, 2016
    Assignee: RINAT NEUROSCIENCE CORP.
    Inventors: Wei-Hsien Ho, Jaume Pons, Arvind Rajpal, Pavel Strop
  • Publication number: 20160347849
    Abstract: Provided herein are antibodies, or antigen binding portions thereof, that bind to OX40. Also provided are uses of these proteins in therapeutic applications, such as in the treatment of cancer. Further provided are cells that produce the antibodies, polynucleotides encoding the heavy and/or light chain variable region of the antibodies, and vectors comprising the polynucleotides encoding the heavy and/or light chain variable region of the antibodies.
    Type: Application
    Filed: May 26, 2016
    Publication date: December 1, 2016
    Inventors: Zhehong CAI, Indrani CHAKRABORTY, Marie-Michelle Navarro GARCIA, Thomas D. KEMPE, Alan J. KORMAN, Alexander T. KOZHICH, Hadia LEMAR, Mark MAURER, Christina Maria MILBURN, Michael QUIGLEY, Maria RODRIGUEZ, Xiang SHAO, Mohan SRINIVASAN, Brenda L. STEVENS, Kent THUDIUM, Susan Chien-Szu WONG, Jochem GOKEMEIJER, Xi-Tao WANG, Han CHANG, Christine HUANG, Maria JURE-KUNKEL, Zheng YANG, Yan FENG, Patrick GUIRNALDA, Nils LONBERG, Bryan C. BARNHART, Aaron P. YAMNIUK, Karla A. HENNING, Michelle Minhua HAN, Ming LEI, Liang SCHWEIZER, Sandra V. HATCHER, Arvind RAJPAL, Praveen AANUR, Mark J. SELBY
  • Publication number: 20160297885
    Abstract: The present invention relates to antibodies, e.g., full length antibodies or antigen binding fragments thereof, that specifically bind to BCMA (B-Cell Maturation Antigen) and/or CD3 (Cluster of Differentiation 3). The invention also relates to antibody conjugates (e.g., antibody-drug-conjugates) comprising the BCMA antibodies, compositions comprising the BCMA antibodies, and methods of using the BCMA antibodies and their conjugates for treating conditions associated with cells expressing BCMA (e.g., cancer or autoimmune disease). The invention further relates to heteromultimeric antibodies that specifically bind to CD3 and a tumor cell antigen, (e.g., bispecific antibodies that specifically bind to CD3 and BCMA). Compositions comprising such heteromultimeric antibodies, methods for producing and purifying such heterodimeric antibodies, and their use in diagnostics and therapeutics are also provided.
    Type: Application
    Filed: March 30, 2016
    Publication date: October 13, 2016
    Applicant: PFIZER INC.
    Inventors: Tracy Chia-Chien KUO, Javier Fernando CHAPARRO RIGGERS, Wei CHEN, Amy Shaw-Ru CHEN, Edward Derrick PASCUA, Thomas John VAN BLARCOM, Leila Marie BOUSTANY, Weihsien HO, Yik Andy YEUNG, Pavel STROP, Arvind RAJPAL