Patents by Inventor Arvind Yadav

Arvind Yadav has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10954203
    Abstract: Compositions and processes for producing high purity acesulfame potassium are described. One process comprises the steps of providing a crude acesulfame potassium composition comprising acesulfame potassium and acetoacetamide, concentrating the crude acesulfame potassium composition to form a water stream and an intermediate acesulfame potassium composition comprising acesulfame potassium and less than 33 wppm acetoacetamide, and separating the intermediate acesulfame potassium composition to form the finished acesulfame potassium composition comprising acesulfame potassium and less than 33 wppm acetoacetamide. The concentrating step is conducted at a temperature below 90° C. and the separating step is conducted at a temperature at or below 35° C.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: March 23, 2021
    Assignee: Celanese International Corporation
    Inventors: Christoph Mollenkopf, Peter Groer, Arvind Yadav
  • Patent number: 10954204
    Abstract: Compositions and processes for producing high purity acesulfame potassium are described. One process comprises the steps of forming a cyclic sulfur trioxide adduct; hydrolyzing the cyclic sulfur trioxide adduct to form an acesulfame-H composition comprising acesulfame-H; neutralizing the acesulfame-H in the acesulfame-H composition to form a crude acesulfame potassium composition comprising acesulfame potassium and less than 2800 wppm acetoacetamide-N-sulfonic acid, wherein the neutralizing step is conducted or maintained at a pH at or below 11.0; and treating the crude acesulfame potassium composition to form the finished acesulfame potassium composition comprising acesulfame potassium and less than 37 wppm acetoacetamide-N-sulfonic acid.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: March 23, 2021
    Assignee: Celanese International Corporation
    Inventors: Christoph Mollenkopf, Peter Groer, Arvind Yadav
  • Publication number: 20200361885
    Abstract: Compositions and processes for producing high purity acesulfame potassium are described. One process comprises the steps of forming a cyclic sulfur trioxide adduct; hydrolyzing the cyclic sulfur trioxide adduct to form an acesulfame-H composition comprising acesulfame-H; neutralizing the acesulfame-H in the acesulfame-H composition to form a crude acesulfame potassium composition comprising acesulfame potassium and less than 2800 wppm acetoacetamide-N-sulfonic acid, wherein the neutralizing step is conducted or maintained at a pH at or below 11.0; and treating the crude acesulfame potassium composition to form the finished acesulfame potassium composition comprising acesulfame potassium and less than 37 wppm acetoacetamide-N-sulfonic acid.
    Type: Application
    Filed: August 4, 2020
    Publication date: November 19, 2020
    Inventors: Christoph Mollenkopf, Peter Groer, Arvind Yadav
  • Publication number: 20200361884
    Abstract: Compositions and processes for producing high purity acesulfame potassium are described. One process comprises the steps of providing a crude acesulfame potassium composition comprising acesulfame potassium and acetoacetamide, concentrating the crude acesulfame potassium composition to form a water stream and an intermediate acesulfame potassium composition comprising acesulfame potassium and less than 33 wppm acetoacetamide, and separating the intermediate acesulfame potassium composition to form the finished acesulfame potassium composition comprising acesulfame potassium and less than 33 wppm acetoacetamide. The concentrating step is conducted at a temperature below 90° C. and the separating step is conducted at a temperature at or below 35° C.
    Type: Application
    Filed: August 4, 2020
    Publication date: November 19, 2020
    Inventors: Christoph Mollenkopf, Peter Groer, Arvind Yadav
  • Publication number: 20200361886
    Abstract: A process for producing acesulfame potassium, the process comprising the steps of providing a cyclizing agent composition comprising a cyclizing agent and a solvent and having an initial temperature, cooling the cyclizing agent composition to form a cooled cyclizing agent composition having a cooled temperature less than 35° C., reacting an acetoacetamide salt with the cyclizing agent in the cooled cyclizing agent composition to form a cyclic sulfur trioxide adduct composition comprising cyclic sulfur trioxide adduct; and, forming from the cyclic sulfur trioxide adduct in the cyclic sulfur trioxide adduct composition the finished acesulfame potassium composition comprising non-chlorinated acesulfame potassium and less than 39 wppm 5-chloro-acesulfame potassium. The cooled temperature is at least 2° C. less than the initial temperature.
    Type: Application
    Filed: August 4, 2020
    Publication date: November 19, 2020
    Inventors: Christoph Mollenkopf, Peter Groer, Arvind Yadav
  • Publication number: 20200361887
    Abstract: Improved processes for producing high purity acesulfame potassium. In one embodiment, the process comprises the steps of contacting a solvent, e.g., dichloromethane, and a cyclizing agent, e.g., sulfur trioxide, to form a cyclizing agent composition and reacting an acetoacetamide salt with the cyclizing agent in the composition to form a cyclic sulfur trioxide adduct. The contact time is less than 60 minutes. The process also comprises forming from the cyclic sulfur trioxide adduct composition a finished acesulfame potassium composition comprising non-chlorinated, e.g., non-chlorinated, acesulfame potassium and less than 35 wppm 5-halo acesulfame potassium, preferably less than 5 wppm.
    Type: Application
    Filed: August 4, 2020
    Publication date: November 19, 2020
    Inventors: Christoph Mollenkopf, Peter Groer, Arvind Yadav
  • Patent number: 10781190
    Abstract: A process for producing acesulfame potassium, the process comprising the steps of providing a cyclizing agent composition comprising a cyclizing agent and a solvent and having an initial temperature, cooling the cyclizing agent composition to form a cooled cyclizing agent composition having a cooled temperature less than 35° C., reacting an acetoacetamide salt with the cyclizing agent in the cooled cyclizing agent composition to form a cyclic sulfur trioxide adduct composition comprising cyclic sulfur trioxide adduct; and, forming from the cyclic sulfur trioxide adduct in the cyclic sulfur trioxide adduct composition the finished acesulfame potassium composition comprising non-chlorinated acesulfame potassium and less than 39 wppm 5-chloro-acesulfame potassium. The cooled temperature is at least 2° C. less than the initial temperature.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: September 22, 2020
    Assignee: Celanese International Corporation
    Inventors: Christoph Mollenkopf, Peter Groer, Arvind Yadav
  • Patent number: 10781191
    Abstract: Improved processes for producing high purity acesulfame potassium. In one embodiment, the process comprises the steps of contacting a solvent, e.g., dichloromethane, and a cyclizing agent, e.g., sulfur trioxide, to form a cyclizing agent composition and reacting an acetoacetamide salt with the cyclizing agent in the composition to form a cyclic sulfur trioxide adduct. The contact time is less than 60 minutes. The process also comprises forming from the cyclic sulfur trioxide adduct composition a finished acesulfame potassium composition comprising non-chlorinated, e.g., non-chlorinated, acesulfame potassium and less than 35 wppm 5-halo acesulfame potassium, preferably less than 5 wppm.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: September 22, 2020
    Assignee: Celanese International Corporation
    Inventors: Christoph Mollenkopf, Peter Groer, Arvind Yadav
  • Patent number: 10759770
    Abstract: Compositions and processes for producing high purity acesulfame potassium are described. One process comprises the steps of providing a crude acesulfame potassium composition comprising acesulfame potassium and acetoacetamide, concentrating the crude acesulfame potassium composition to form a water stream and an intermediate acesulfame potassium composition comprising acesulfame potassium and less than 33 wppm acetoacetamide, and separating the intermediate acesulfame potassium composition to form the finished acesulfame potassium composition comprising acesulfame potassium and less than 33 wppm acetoacetamide. The concentrating step is conducted at a temperature below 90° C. and the separating step is conducted at a temperature at or below 35° C.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: September 1, 2020
    Assignee: Celanese International Corporation
    Inventors: Christoph Mollenkopf, Peter Groer, Arvind Yadav
  • Patent number: 10759771
    Abstract: Compositions and processes for producing high purity acesulfame potassium are described. One process comprises the steps of forming a cyclic sulfur trioxide adduct; hydrolyzing the cyclic sulfur trioxide adduct to form an acesulfame-H composition comprising acesulfame-H; neutralizing the acesulfame-H in the acesulfame-H composition to form a crude acesulfame potassium composition comprising acesulfame potassium and less than 2800 wppm acetoacetamide-N-sulfonic acid, wherein the neutralizing step is conducted or maintained at a pH at or below 11.0; and treating the crude acesulfame potassium composition to form the finished acesulfame potassium composition comprising acesulfame potassium and less than 37 wppm acetoacetamide-N-sulfonic acid.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: September 1, 2020
    Assignee: Celanese International Corporation
    Inventors: Christoph Mollenkopf, Peter Groer, Arvind Yadav
  • Publication number: 20200095213
    Abstract: A process for producing acesulfame potassium, the process comprising the steps of providing a cyclizing agent composition comprising a cyclizing agent and a solvent and having an initial temperature, cooling the cyclizing agent composition to form a cooled cyclizing agent composition having a cooled temperature less than 35° C., reacting an acetoacetamide salt with the cyclizing agent in the cooled cyclizing agent composition to form a cyclic sulfur trioxide adduct composition comprising cyclic sulfur trioxide adduct; and, forming from the cyclic sulfur trioxide adduct in the cyclic sulfur trioxide adduct composition the finished acesulfame potassium composition comprising non-chlorinated acesulfame potassium and less than 39 wppm 5-chloro-acesulfame potassium. The cooled temperature is at least 2° C. less than the initial temperature.
    Type: Application
    Filed: November 15, 2019
    Publication date: March 26, 2020
    Inventors: Christoph Mollenkopf, Peter Groer, Arvind Yadav
  • Patent number: 10590097
    Abstract: A process for producing acesulfame potassium, the process comprising the steps of providing a cyclizing agent composition comprising a cyclizing agent and a solvent and having an initial temperature, cooling the cyclizing agent composition to form a cooled cyclizing agent composition having a cooled temperature less than 35° C., reacting an acetoacetamide salt with the cyclizing agent in the cooled cyclizing agent composition to form a cyclic sulfur trioxide adduct composition comprising cyclic sulfur trioxide adduct; and, forming from the cyclic sulfur trioxide adduct in the cyclic sulfur trioxide adduct composition the finished acesulfame potassium composition comprising non-chlorinated acesulfame potassium and less than 39 wppm 5-chloro-acesulfame potassium. The cooled temperature is at least 2° C. less than the initial temperature.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: March 17, 2020
    Assignee: Celanese International Corporation
    Inventors: Christoph Mollenkopf, Peter Groer, Arvind Yadav
  • Patent number: 10590096
    Abstract: Compositions and processes for producing high purity acesulfame potassium are described. One process comprises the steps of forming a cyclic sulfur trioxide adduct; hydrolyzing the cyclic sulfur trioxide adduct to form an acesulfame-H composition comprising acesulfame-H; neutralizing the acesulfame-H in the acesulfame-H composition to form a crude acesulfame potassium composition comprising acesulfame potassium and less than 2800 wppm acetoacetamide-N-sulfonic acid, wherein the neutralizing step is conducted or maintained at a pH at or below 11.0; and treating the crude acesulfame potassium composition to form the finished acesulfame potassium composition comprising acesulfame potassium and less than 37 wppm acetoacetamide-N-sulfonic acid.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: March 17, 2020
    Assignee: Celenese International Corporation
    Inventors: Christoph Mollenkopf, Peter Groer, Arvind Yadav
  • Patent number: 10590095
    Abstract: Compositions and processes for producing high purity acesulfame potassium are described. One process comprises the steps of providing a crude acesulfame potassium composition comprising acesulfame potassium and acetoacetamide, concentrating the crude acesulfame potassium composition to form a water stream and an intermediate acesulfame potassium composition comprising acesulfame potassium and less than 33 wppm acetoacetamide, and separating the intermediate acesulfame potassium composition to form the finished acesulfame potassium composition comprising acesulfame potassium and less than 33 wppm acetoacetamide. The concentrating step is conducted at a temperature below 90° C. and the separating step is conducted at a temperature at or below 35° C.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: March 17, 2020
    Assignee: Celanese International Corporation
    Inventors: Christoph Mollenkopf, Peter Groer, Arvind Yadav
  • Patent number: 10590098
    Abstract: Improved processes for producing high purity acesulfame potassium. In one embodiment, the process comprises the steps of contacting a solvent, e.g., dichloromethane, and a cyclizing agent, e.g., sulfur trioxide, to form a cyclizing agent composition and reacting an acetoacetamide salt with the cyclizing agent in the composition to form a cyclic sulfur trioxide adduct. The contact time is less than 60 minutes. The process also comprises forming from the cyclic sulfur trioxide adduct composition a finished acesulfame potassium composition comprising non-chlorinated, e.g., non-chlorinated, acesulfame potassium and less than 35 wppm 5-halo acesulfame potassium, preferably less than 5 wppm.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: March 17, 2020
    Assignee: Celanese International Corporation
    Inventors: Christoph Mollenkopf, Peter Groer, Arvind Yadav
  • Publication number: 20200079748
    Abstract: Improved processes for producing high purity acesulfame potassium. In one embodiment, the process comprises the steps of contacting a solvent, e.g., dichloromethane, and a cyclizing agent, e.g., sulfur trioxide, to form a cyclizing agent composition and reacting an acetoacetamide salt with the cyclizing agent in the composition to form a cyclic sulfur trioxide adduct. The contact time is less than 60 minutes. The process also comprises forming from the cyclic sulfur trioxide adduct composition a finished acesulfame potassium composition comprising non-chlorinated, e.g., non-chlorinated, acesulfame potassium and less than 35 wppm 5-halo acesulfame potassium, preferably less than 5 wppm.
    Type: Application
    Filed: November 15, 2019
    Publication date: March 12, 2020
    Inventors: Christoph Mollenkopf, Peter Groer, Arvind Yadav
  • Publication number: 20200079747
    Abstract: Compositions and processes for producing high purity acesulfame potassium are described. One process comprises the steps of forming a cyclic sulfur trioxide adduct; hydrolyzing the cyclic sulfur trioxide adduct to form an acesulfame-H composition comprising acesulfame-H; neutralizing the acesulfame-H in the acesulfame-H composition to form a crude acesulfame potassium composition comprising acesulfame potassium and less than 2800 wppm acetoacetamide-N-sulfonic acid, wherein the neutralizing step is conducted or maintained at a pH at or below 11.0; and treating the crude acesulfame potassium composition to form the finished acesulfame potassium composition comprising acesulfame potassium and less than 37 wppm acetoacetamide-N-sulfonic acid.
    Type: Application
    Filed: November 15, 2019
    Publication date: March 12, 2020
    Inventors: Christoph Mollenkopf, Peter Groer, Arvind Yadav
  • Publication number: 20200079746
    Abstract: Compositions and processes for producing high purity acesulfame potassium are described. One process comprises the steps of providing a crude acesulfame potassium composition comprising acesulfame potassium and acetoacetamide, concentrating the crude acesulfame potassium composition to form a water stream and an intermediate acesulfame potassium composition comprising acesulfame potassium and less than 33 wppm acetoacetamide, and separating the intermediate acesulfame potassium composition to form the finished acesulfame potassium composition comprising acesulfame potassium and less than 33 wppm acetoacetamide. The concentrating step is conducted at a temperature below 90° C. and the separating step is conducted at a temperature at or below 35° C.
    Type: Application
    Filed: November 15, 2019
    Publication date: March 12, 2020
    Inventors: Christoph Mollenkopf, Peter Groer, Arvind Yadav
  • Publication number: 20190169145
    Abstract: A process for producing acesulfame potassium, the process comprising the steps of providing a cyclizing agent composition comprising a cyclizing agent and a solvent and having an initial temperature, cooling the cyclizing agent composition to form a cooled cyclizing agent composition having a cooled temperature less than 35° C., reacting an acetoacetamide salt with the cyclizing agent in the cooled cyclizing agent composition to form a cyclic sulfur trioxide adduct composition comprising cyclic sulfur trioxide adduct; and, forming from the cyclic sulfur trioxide adduct in the cyclic sulfur trioxide adduct composition the finished acesulfame potassium composition comprising non-chlorinated acesulfame potassium and less than 39 wppm 5-chloro-acesulfame potassium. The cooled temperature is at least 2° C. less than the initial temperature.
    Type: Application
    Filed: February 12, 2019
    Publication date: June 6, 2019
    Inventors: Christoph Mollenkopf, Peter Groer, Arvind Yadav
  • Publication number: 20190169144
    Abstract: Compositions and processes for producing high purity acesulfame potassium are described. One process comprises the steps of forming a cyclic sulfur trioxide adduct; hydrolyzing the cyclic sulfur trioxide adduct to form an acesulfame-H composition comprising acesulfame-H; neutralizing the acesulfame-H in the acesulfame-H composition to form a crude acesulfame potassium composition comprising acesulfame potassium and less than 2800 wppm acetoacetamide-N-sulfonic acid, wherein the neutralizing step is conducted or maintained at a pH at or below 11.0; and treating the crude acesulfame potassium composition to form the finished acesulfame potassium composition comprising acesulfame potassium and less than 37 wppm acetoacetamide-N-sulfonic acid.
    Type: Application
    Filed: February 12, 2019
    Publication date: June 6, 2019
    Inventors: Christoph Mollenkopf, Peter Groer, Arvind Yadav