Patents by Inventor Aryeh Farber

Aryeh Farber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11824576
    Abstract: An apparatus for generating an output oscillator signal is provided. The apparatus includes a deviation determining circuitry configured to generate a deviation signal based on a first comparison signal and a second comparison signal. Further, the apparatus includes a first oscillator configured to generate the output oscillator signal based on the deviation signal and a second oscillator signal from a second, resonator-based oscillator. The first comparison signal is based on the second oscillator signal or the output oscillator signal. The second oscillator signal has a frequency of at least 1 GHz. The second comparison signal is based on a third oscillator signal from a third oscillator. The third oscillator signal has a frequency lower than 1 GHz.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: November 21, 2023
    Assignee: Intel Corporation
    Inventors: Ofir Degani, Gil Horovitz, Evgeny Shumaker, Sergey Bershansky, Aryeh Farber, Igor Gertman, Run Levinger
  • Patent number: 11558059
    Abstract: Examples relate to a digitally controlled oscillator circuit arrangement, a digitally controlled oscillation means, a method for a digitally controlled oscillator, a digital loop filter circuit arrangement, a digital loop filtering means, a method for a digital loop filter, a phase locked loop circuit arrangement and phase locked loop, a user device and a base station.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: January 17, 2023
    Assignee: Intel Corporation
    Inventors: Igal Kushnir, Evgeny Shumaker, Aryeh Farber, Gil Horovitz
  • Publication number: 20220094385
    Abstract: An apparatus for generating an output oscillator signal is provided. The apparatus includes a deviation determining circuitry configured to generate a deviation signal based on a first comparison signal and a second comparison signal. Further, the apparatus includes a first oscillator configured to generate the output oscillator signal based on the deviation signal and a second oscillator signal from a second, resonator-based oscillator. The first comparison signal is based on the second oscillator signal or the output oscillator signal. The second oscillator signal has a frequency of at least 1 GHz. The second comparison signal is based on a third oscillator signal from a third oscillator. The third oscillator signal has a frequency lower than 1 GHz.
    Type: Application
    Filed: September 24, 2020
    Publication date: March 24, 2022
    Inventors: Ofir DEGANI, Gil HOROVITZ, Evgeny SHUMAKER, Sergey BERSHANSKY, Aryeh FARBER, Igor GERTMAN, Run LEVINGER
  • Publication number: 20210203333
    Abstract: Examples relate to a digitally controlled oscillator circuit arrangement, a digitally controlled oscillation means, a method for a digitally controlled oscillator, a digital loop filter circuit arrangement, a digital loop filtering means, a method for a digital loop filter, a phase locked loop circuit arrangement and phase locked loop, a user device and a base station. The digitally controlled oscillator circuit arrangement comprises input circuitry for obtaining a frequency setting signal, the frequency setting signal comprising a plurality of signal components, selection circuitry for selecting one signal component of the plurality of signal components of the frequency setting signal based on an oscillation signal of the digitally controlled oscillator circuit arrangement, signal generation circuitry for generating the oscillation signal based on the selected signal component of the frequency setting signal, and output circuitry for providing the oscillation signal.
    Type: Application
    Filed: August 27, 2020
    Publication date: July 1, 2021
    Inventors: Igal KUSHNIR, Evgeny SHUMAKER, Aryeh FARBER, Gil HOROVITZ
  • Patent number: 10809669
    Abstract: Systems, methods, and circuitries are disclosed for controlling an adaptive time-to-digital converter (TDC) that determines a phase difference between a reference signal and a phase locked loop (PLL) feedback signal. Adaptive TDC circuitry includes a chain of n delay elements each characterized by a delay. Gate circuitry generates a gated PLL feedback signal while a gating enable signal has an enable value. N sampling elements, each associated with a delay element, are enabled by the reference signal arriving at the input of the associated delay element to store a value of the gated PLL feedback signal. Adaptive gating circuitry is configured to generate the gating enable signal based on the delay and a period of the PLL feedback signal. A supply voltage for the delay elements may be controlled to cause the delay elements to exhibit a desired delay.
    Type: Grant
    Filed: October 14, 2019
    Date of Patent: October 20, 2020
    Assignee: Intel Corporation
    Inventors: Gil Horovitz, Aryeh Farber, Nisim Machluf, Evgeny Shumaker, Igal Kushnir
  • Patent number: 10768580
    Abstract: A time-to-digital converter is provided. The time-to-digital converter includes a delay circuit configured to iteratively delay a reference signal for generating a plurality of delayed reference signals. Further, the time-to-digital converter includes a plurality of sample circuits each configured to sample an oscillation signal based on one of the plurality of delayed reference signals. The time-to-digital converter additionally includes a control circuit configured to de-activate at least one of the plurality of sample circuits based on a predicted value of the phase of the oscillation signal.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: September 8, 2020
    Assignee: Intel IP Corporation
    Inventors: Yair Dgani, Michael Kerner, Elan Banin, Evgeny Shumaker, Gil Horovitz, Ofir Degani, Rotem Banin, Aryeh Farber, Rotem Avivi, Eshel Gordon, Tami Sela
  • Publication number: 20200201263
    Abstract: Systems, methods, and circuitries are disclosed for controlling an adaptive time-to-digital converter (TDC) that determines a phase difference between a reference signal and a phase locked loop (PLL) feedback signal. Adaptive TDC circuitry includes a chain of n delay elements each characterized by a delay. Gate circuitry generates a gated PLL feedback signal while a gating enable signal has an enable value. N sampling elements, each associated with a delay element, are enabled by the reference signal arriving at the input of the associated delay element to store a value of the gated PLL feedback signal. Adaptive gating circuitry is configured to generate the gating enable signal based on the delay and a period of the PLL feedback signal. A supply voltage for the delay elements may be controlled to cause the delay elements to exhibit a desired delay.
    Type: Application
    Filed: October 14, 2019
    Publication date: June 25, 2020
    Inventors: Gil Horovitz, Aryeh Farber, Nisim Machluf, Evgeny Shumaker, Igal Kushnir
  • Publication number: 20190384230
    Abstract: A time-to-digital converter is provided. The time-to-digital converter includes a delay circuit configured to iteratively delay a reference signal for generating a plurality of delayed reference signals. Further, the time-to-digital converter includes a plurality of sample circuits each configured to sample an oscillation signal based on one of the plurality of delayed reference signals. The time-to-digital converter additionally includes a control circuit configured to de-activate at least one of the plurality of sample circuits based on a predicted value of the phase of the oscillation signal.
    Type: Application
    Filed: March 2, 2017
    Publication date: December 19, 2019
    Inventors: Yair Dgani, Michael Kerner, Elan Banin, Evgeny Shumaker, Gil Horovitz, Ofir Degani, Rotem Banin, Aryeh Farber, Rotem Avivi, Eshel Gordon, Tami Sela
  • Patent number: 10474110
    Abstract: Systems, methods, and circuitries are disclosed for controlling an adaptive time-to-digital converter (TDC) that determines a phase difference between a reference signal and a phase locked loop (PLL) feedback signal. Adaptive TDC circuitry includes a chain of n delay elements each characterized by an incremental delay. Gate circuitry outputs a gated PLL feedback signal while a gating enable signal has an enable value. N sampling elements, each associated with a delay element, are enabled by the reference signal arriving at the input of the associated delay element to store a value of the gated PLL feedback signal. Adaptive gating circuitry is configured to generate the gating enable signal based on the incremental delay and a period of the PLL feedback signal. A supply voltage for the delay elements may be controlled to cause the delay elements to exhibit a desired incremental delay.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: November 12, 2019
    Assignee: Intel Corporation
    Inventors: Gil Horovitz, Aryeh Farber, Nisim Machluf, Evgeny Shumaker, Igal Kushnir
  • Patent number: 9923563
    Abstract: A digital phase lock loop (DPLL) device or system can operate to analyze and estimate a deterministic jitter in the digital domain, while correcting for it in the analog domain. A reference oscillator can provide an analog reference signal to the DPLL via a reference path. A shaper of the reference path can process the analog reference signal and provide a digital signal to a doubler component that doubles the frequency for a digital reference signal. The doubler component itself can add deterministic jitter to the noise of the digital reference signal it provides to the DPLL. An estimation of the DPLL performs various calibration processes to determine the deterministic jitter in the digital domain and provide an analog bias signal to the signal shaper component to correct for the deterministic jitter, keeping it at around zero.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: March 20, 2018
    Assignee: Intel IP Corporation
    Inventors: Gil Horovitz, Elan Banin, Igal Kushnir, Aryeh Farber, Ran Krichman, Ofir Degani, Rotem Banin