Patents by Inventor Asa Hammond

Asa Hammond has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210129989
    Abstract: Unmanned aerial vehicles (UAVs) with stereoscopic imaging, and associated systems and methods are disclosed herein. A representative system includes a support structure oriented relative to a vehicle roll axis, pitch axis, and yaw axis. The system further includes multiple propellers carried by the support structure, and first and second stereo imaging devices, also carried by the support structure. The first stereo imaging device has a first field of view, the second stereo imaging device has a second field of view, and at least one of the multiple propellers is positioned forward of and between the first and second stereo imaging devices. The at least one propeller has a rotation disc that does not overlap with the first and second fields of view. In representative configurations the fields of view also do not overlap with other (e.g., any other) structures of the UAV.
    Type: Application
    Filed: October 1, 2020
    Publication date: May 6, 2021
    Inventors: Nathan Schuett, Asa Hammond
  • Publication number: 20210064024
    Abstract: Systems and methods for scanning environments and tracking unmanned aerial vehicles within the scanned environments are disclosed. A method in accordance with a particular embodiment includes using a rangefinder off-board an unmanned air vehicle (UAV) to identify points in a region. The method can further include forming a computer-based map of the region with the points and using the rangefinder and a camera to locate the UAV as it moves in the region. The location of the UAV can be compared with locations on the computer-based map and, based upon the comparison, the method can include transmitting guidance information to the UAV. In a further particular embodiment, two-dimensional imaging data is used in addition to the rangefinder data to provide color information to points in the region.
    Type: Application
    Filed: April 15, 2020
    Publication date: March 4, 2021
    Inventors: Asa Hammond, Nathan Schuett, Naimisaranya Das Busek
  • Patent number: 10893190
    Abstract: Collecting images for digital capture of real world environments, and associated systems and methods are disclosed. A representative method for digitally capturing the environment includes scanning an environment with a laser scanner from at least one fixed point to obtain scan data and, based at least in part on the scan data, creating a view capture route corresponding to a path in the environment. The method can further include receiving optical data from a human operator carrying an optical sensor as the human operator travels along the view capture route. The method can still further include generating a virtual (or other) representation of the environment, based at least in part on the optical data.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: January 12, 2021
    Assignee: PreNav, Inc.
    Inventors: Nathan Schuett, Asa Hammond
  • Patent number: 10671066
    Abstract: Systems and methods for scanning environments and tracking unmanned aerial vehicles within the scanned environments are disclosed. A method in accordance with a particular embodiment includes using a rangefinder off-board an unmanned air vehicle (UAV) to identify points in a region. The method can further include forming a computer-based map of the region with the points and using the rangefinder and a camera to locate the UAV as it moves in the region. The location of the UAV can be compared with locations on the computer-based map and, based upon the comparison, the method can include transmitting guidance information to the UAV. In a further particular embodiment, two-dimensional imaging data is used in addition to the rangefinder data to provide color information to points in the region.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: June 2, 2020
    Assignee: PreNav, Inc.
    Inventors: Asa Hammond, Nathan Schuett, Naimisaranya Das Busek
  • Patent number: 10416668
    Abstract: Systems and methods for scanning environments and tracking unmanned aerial vehicles within the scanned environments are disclosed. A method in accordance with a particular embodiment includes using a rangefinder off-board an unmanned air vehicle (UAV) to identify points in a region. The method can further include forming a computer-based map of the region with the points and using the rangefinder and a camera to locate the UAV as it moves in the region. The location of the UAV can be compared with locations on the computer-based map and, based upon the comparison, the method can include transmitting guidance information to the UAV. In a further particular embodiment, two-dimensional imaging data is used in addition to the rangefinder data to provide color information to points in the region.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: September 17, 2019
    Assignee: PRENAV, INC.
    Inventors: Asa Hammond, Nathan Schuett, Naimisaranya Das Busek
  • Publication number: 20190037133
    Abstract: Collecting images for digital capture of real world environments, and associated systems and methods are disclosed. A representative method for digitally capturing the environment includes scanning an environment with a laser scanner from at least one fixed point to obtain scan data and, based at least in part on the scan data, creating a view capture route corresponding to a path in the environment. The method can further include receiving optical data from a human operator carrying an optical sensor as the human operator travels along the view capture route. The method can still further include generating a virtual (or other) representation of the environment, based at least in part on the optical data.
    Type: Application
    Filed: January 29, 2018
    Publication date: January 31, 2019
    Inventors: Nathan Schuett, Asa Hammond
  • Patent number: 10162353
    Abstract: Systems and methods for scanning environments and tracking unmanned aerial vehicles within the scanned environments are disclosed. A method in accordance with a particular embodiment includes using a rangefinder off-board an unmanned air vehicle (UAV) to identify points in a region. The method can further include forming a computer-based map of the region with the points and using the rangefinder and a camera to locate the UAV as it moves in the region. The location of the UAV can be compared with locations on the computer-based map and, based upon the comparison, the method can include transmitting guidance information to the UAV. In a further particular embodiment, two-dimensional imaging data is used in addition to the rangefinder data to provide color information to points in the region.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: December 25, 2018
    Assignee: PreNav, Inc.
    Inventors: Asa Hammond, Nathan Schuett, Naimisaranya Das Busek
  • Publication number: 20180354618
    Abstract: Active tethers for controlling UAV flight volumes, and associated methods and systems, are disclosed. A method in accordance with a representative embodiment includes directing a UAV upwardly from a launch site, receiving an indication of a UAV failure or upcoming failure while the UAV is aloft, and in response to the indication, applying an acceleration to the UAV via a tether attached to the UAV.
    Type: Application
    Filed: June 12, 2018
    Publication date: December 13, 2018
    Inventors: Nathan Schuett, Asa Hammond
  • Publication number: 20160292872
    Abstract: Systems and methods for scanning environments and tracking unmanned aerial vehicles within the scanned environments are disclosed. A method in accordance with a particular embodiment includes using a rangefinder off-board an unmanned air vehicle (UAV) to identify points in a region. The method can further include forming a computer-based map of the region with the points and using the rangefinder and a camera to locate the UAV as it moves in the region. The location of the UAV can be compared with locations on the computer-based map and, based upon the comparison, the method can include transmitting guidance information to the UAV. In a further particular embodiment, two-dimensional imaging data is used in addition to the rangefinder data to provide color information to points in the region.
    Type: Application
    Filed: March 2, 2016
    Publication date: October 6, 2016
    Inventors: Asa Hammond, Nathan Schuett, Naimisaranya Das Busek
  • Publication number: 20160292869
    Abstract: Systems and methods for scanning environments and tracking unmanned aerial vehicles within the scanned environments are disclosed. A method in accordance with a particular embodiment includes using a rangefinder off-board an unmanned air vehicle (UAV) to identify points in a region. The method can further include forming a computer-based map of the region with the points and using the rangefinder and a camera to locate the UAV as it moves in the region. The location of the UAV can be compared with locations on the computer-based map and, based upon the comparison, the method can include transmitting guidance information to the UAV. In a further particular embodiment, two-dimensional imaging data is used in addition to the rangefinder data to provide color information to points in the region.
    Type: Application
    Filed: March 2, 2016
    Publication date: October 6, 2016
    Inventors: Asa Hammond, Nathan Schuett, Naimisaranya Das Busek
  • Publication number: 20160291593
    Abstract: Systems and methods for scanning environments and tracking unmanned aerial vehicles within the scanned environments are disclosed. A method in accordance with a particular embodiment includes using a rangefinder off-board an unmanned air vehicle (UAV) to identify points in a region. The method can further include forming a computer-based map of the region with the points and using the rangefinder and a camera to locate the UAV as it moves in the region. The location of the UAV can be compared with locations on the computer-based map and, based upon the comparison, the method can include transmitting guidance information to the UAV. In a further particular embodiment, two-dimensional imaging data is used in addition to the rangefinder data to provide color information to points in the region.
    Type: Application
    Filed: March 2, 2016
    Publication date: October 6, 2016
    Inventors: Asa Hammond, Nathan Schuett, Naimisaranya Das Busek
  • Patent number: 9160898
    Abstract: Systems and methods for creating a motion control photography set are disclosed. One embodiment includes a master control that receives control signals for a plurality of device actors, such as robot arms, lighting, and camera controls, and synchronizes the plurality of control signals with a global timeline to create a plurality of synchronized signals, such that the control data for each actor of the device actors is associated with a corresponding position in the global timeline. According to another embodiment, the set also includes a master input that conveys a master input signal to the master control indicating a position in the global timeline and a rate of progression through the global timeline. In response to the master input signal, the control data for each actor of the device actors is sent to respective device actors at an adjustable rate of progression through the global timeline.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: October 13, 2015
    Assignee: Autofuss
    Inventors: Asa Hammond, Jeff Linnell, Kendra Byrne
  • Publication number: 20120188350
    Abstract: Systems and methods for creating a motion control photography set are disclosed. One embodiment includes a master control that receives control signals for a plurality of device actors, such as robot arms, lighting, and camera controls, and synchronizes the plurality of control signals with a global timeline to create a plurality of synchronized signals, such that the control data for each actor of the device actors is associated with a corresponding position in the global timeline. According to another embodiment, the set also includes a master input that conveys a master input signal to the master control indicating a position in the global timeline and a rate of progression through the global timeline. In response to the master input signal, the control data for each actor of the device actors is sent to respective device actors at an adjustable rate of progression through the global timeline.
    Type: Application
    Filed: January 25, 2012
    Publication date: July 26, 2012
    Inventors: Asa Hammond, Jeff Linnell, Kendra Byrne