Patents by Inventor Asako Hirai

Asako Hirai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12100782
    Abstract: In an embodiment an optoelectronic semiconductor chip includes a semiconductor layer sequence with a first layer, a second layer and an active layer arranged between the first layer and the second layer, the semiconductor layer sequence having at least one injection region, wherein the first layer includes a first conductivity type, wherein the second layer includes a second conductivity type, wherein the semiconductor layer sequence includes the first conductivity type within the entire injection region, wherein the injection region, starting from the first layer, at least partially penetrates the active layer, wherein side surfaces of the semiconductor layer sequence are formed at least in places by the injection region, and wherein the injection region is configured to inject charge carriers directly into the active layer.
    Type: Grant
    Filed: March 3, 2020
    Date of Patent: September 24, 2024
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Alvaro Gomez-Iglesias, Asako Hirai
  • Publication number: 20220131034
    Abstract: In an embodiment an optoelectronic semiconductor chip includes a semiconductor layer sequence with a first layer, a second layer and an active layer arranged between the first layer and the second layer, the semiconductor layer sequence having at least one injection region, wherein the first layer includes a first conductivity type, wherein the second layer includes a second conductivity type, wherein the semiconductor layer sequence includes the first conductivity type within the entire injection region, wherein the injection region, starting from the first layer, at least partially penetrates the active layer, wherein side surfaces of the semiconductor layer sequence are formed at least in places by the injection region, and wherein the injection region is configured to inject charge carriers directly into the active layer.
    Type: Application
    Filed: March 3, 2020
    Publication date: April 28, 2022
    Inventors: Alvaro Gomez-Iglesias, Asako Hirai
  • Publication number: 20210320006
    Abstract: A method for producing a semiconductor component and workpiece are disclosed. In an embodiment a method includes forming a first semiconductor layer over a growth substrate, wherein a material of the first semiconductor layer is Inx1Aly1Ga(1-x1-y1)N, with 0?xl?1, 0?yl?1, applying a first modification substrate over the first semiconductor layer, wherein a material of the first modification substrate has a thermal expansion coefficient which is different from that of the first semiconductor layer, removing the growth substrate thereby obtaining a first layer stack, heating the first layer stack to a first growth temperature and growing a second semiconductor layer over a growth surface of the first semiconductor layer after heating the first layer stack, wherein due to heating a lattice constant of the first semiconductor layer is adapted to a lattice constant of the second semiconductor layer.
    Type: Application
    Filed: August 9, 2019
    Publication date: October 14, 2021
    Inventors: Martin Behringer, Alexander Behres, Asako Hirai
  • Patent number: 10910516
    Abstract: The invention relates to an optoelectronic semiconductor element (100) comprising a semiconductor layer sequence (1) with a first layer (10) of a first conductivity type, a second layer (12) of a second conductivity type, and an active layer (11) which is arranged between the first layer (10) and the second layer (12) and which absorbs or emits electromagnetic radiation when operated as intended. The semiconductor element (100) is equipped with a plurality of injection regions (2) which are arranged adjacently to one another in a lateral direction, wherein the semiconductor layer sequence (1) is doped within each injection region (2) such that the semiconductor layer sequence (1) has the same conductivity type as the first layer (10) within the entire injection region (2). Each injection region (2) passes at least partly through the active layer (11) starting from the first layer (10).
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: February 2, 2021
    Assignee: OSRAM OLED GMBH
    Inventors: Alvaro Gomez-Iglesias, Asako Hirai
  • Publication number: 20200052153
    Abstract: The invention relates to an optoelectronic semiconductor element (100) comprising a semiconductor layer sequence (1) with a first layer (10) of a first conductivity type, a second layer (12) of a second conductivity type, and an active layer (11) which is arranged between the first layer (10) and the second layer (12) and which absorbs or emits electromagnetic radiation when operated as intended. The semiconductor element (100) is equipped with a plurality of injection regions (2) which are arranged adjacently to one another in a lateral direction, wherein the semiconductor layer sequence (1) is doped within each injection region (2) such that the semiconductor layer sequence (1) has the same conductivity type as the first layer (10) within the entire injection region (2). Each injection region (2) passes at least partly through the active layer (11) starting from the first layer (10).
    Type: Application
    Filed: October 22, 2019
    Publication date: February 13, 2020
    Inventors: Alvaro GOMEZ-IGLESIAS, Asako HIRAI
  • Patent number: 10522699
    Abstract: An optoelectronic semiconductor chip is disclosed. In an embodiment a chip includes an active zone with a multi-quantum-well structure, wherein the multi-quantum-well structure includes multiple quantum-well layers and multiple barrier layers, which are arranged sequentially in an alternating manner along a growth direction and which each extend continuously over the entire multi-quantum-well structure, wherein seen in a cross-section parallel to the growth direction, the multi-quantum-well structure has at least one emission region and multiple transport regions, wherein the quantum-well layers and the barrier layers are thinner in the transport regions than in the emission region, wherein, along the growth direction, the transport regions have a constant width, and wherein the quantum-well layers and the barrier layers are oriented parallel to one another in the emission region and in the transport regions.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: December 31, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Asako Hirai, Tobias Meyer, Philipp Drechsel, Peter Strauß, Anna Nirschl, Alvaro Gomez-Iglesias, Tobias Niebling, Bastian Galler
  • Patent number: 10490695
    Abstract: The invention relates to an optoelectronic semiconductor element (100) comprising a semiconductor layer sequence (1) with a first layer (10) of a first conductivity type, a second layer (12) of a second conductivity type, and an active layer (11) which is arranged between the first layer (10) and the second layer (12) and which absorbs or emits electromagnetic radiation when operated as intended. The semiconductor element (100) is equipped with a plurality of injection regions (2) which are arranged adjacently to one another in a lateral direction, wherein the semiconductor layer sequence (1) is doped within each injection region (2) such that the semiconductor layer sequence (1) has the same conductivity type as the first layer (10) within the entire injection region (2). Each injection region (2) passes at least partly through the active layer (11) starting from the first layer (10).
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: November 26, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Alvaro Gomez-Iglesias, Asako Hirai
  • Publication number: 20190109246
    Abstract: An optoelectronic semiconductor chip is disclosed. In an embodiment a chip includes an active zone with a multi-quantum-well structure, wherein the multi-quantum-well structure includes multiple quantum-well layers and multiple barrier layers, which are arranged sequentially in an alternating manner along a growth direction and which each extend continuously over the entire multi-quantum-well structure, wherein seen in a cross-section parallel to the growth direction, the multi-quantum-well structure has at least one emission region and multiple transport regions, wherein the quantum-well layers and the barrier layers are thinner in the transport regions than in the emission region, wherein, along the growth direction, the transport regions have a constant width, and wherein the quantum-well layers and the barrier layers are oriented parallel to one another in the emission region and in the transport regions.
    Type: Application
    Filed: November 20, 2018
    Publication date: April 11, 2019
    Inventors: Asako Hirai, Tobias Meyer, Philipp Drechsel, Peter Stauß, Anna Nirschl, Alvaro Gomez-Iglesias, Tobias Niebling, Bastian Galler
  • Patent number: 10249787
    Abstract: The invention relates to a component (10) having a semiconductor layer sequence, which has a p-conducting semiconductor layer (1), an n-conducting semiconductor layer (2), and an active zone (3) arranged between the p-conducting semiconductor layer and the n-conducting semiconductor layer, wherein the active zone has a multiple quantum well structure, which, from the p-conducting semiconductor layer to the n-conducting semiconductor layer, has a plurality of p-side barrier layers (32p) having intermediate quantum well layers (31) and a plurality of n-side barrier layers (32n) having intermediate quantum layers (31). Recesses (4) having flanks are formed in the semiconductor layer sequence on the part of the p-conducting semiconductor layer, wherein the quantum well layers and/or the n- and p-side barrier layers extend in a manner conforming to the flanks of the recesses at least in regions. The interior barrier layers have a larger average layer thickness than the p-side barrier layers.
    Type: Grant
    Filed: March 1, 2016
    Date of Patent: April 2, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Tobias Meyer, Thomas Lehnhardt, Matthias Peter, Asako Hirai, Juergen Off, Philipp Drechsel, Peter Stauss
  • Patent number: 10164134
    Abstract: An optoelectronic semiconductor chip is disclosed. In an embodiment the chip includes an active zone with a multi-quantum-well structure, wherein the multi-quantum-well structure comprises multiple quantum-well layers and multiple barrier layers, which are arranged sequentially in an alternating manner along a growth direction, wherein the multi-quantum-well structure has at least one emission region and multiple transport regions which are arranged sequentially in an alternating manner in a direction perpendicular to the growth direction, wherein at least one of the quantum-well layers and the barrier layers are thinner in the transport regions than in the emission regions, and wherein the quantum-well layers in the transport regions and in the emission regions are oriented perpendicularly to the growth direction with exception of a junction region between adjacent transport regions and emission regions.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: December 25, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Asako Hirai, Tobias Meyer, Philipp Drechsel, Peter Stauß, Anna Nirschl, Alvaro Gomez-Iglesias, Tobias Niebling, Bastian Galler
  • Publication number: 20180083160
    Abstract: The invention relates to a component (10) having a semiconductor layer sequence, which has a p-conducting semiconductor layer (1), an n-conducting semiconductor layer (2), and an active zone (3) arranged between the p-conducting semiconductor layer and the n-conducting semiconductor layer, wherein the active zone has a multiple quantum well structure, which, from the p-conducting semiconductor layer to the n-conducting semiconductor layer, has a plurality of p-side barrier layers (32p) having intermediate quantum well layers (31) and a plurality of n-side barrier layers (32n) having intermediate quantum layers (31). Recesses (4) having flanks are formed in the semiconductor layer sequence on the part of the p-conducting semiconductor layer, wherein the quantum well layers and/or the n- and p-side barrier layers extend in a manner conforming to the flanks of the recesses at least in regions. The interior barrier layers have a larger average layer thickness than the p-side barrier layers.
    Type: Application
    Filed: March 1, 2016
    Publication date: March 22, 2018
    Inventors: Tobias MEYER, Thomas LEHNHARDT, Matthias PETER, Asako HIRAI, Juergen OFF, Philipp DRECHSEL, Peter STAUSS
  • Publication number: 20180062031
    Abstract: An optoelectronic semiconductor chip is disclosed. In an embodiment the chip includes an active zone with a multi-quantum-well structure, wherein the multi-quantum-well structure comprises multiple quantum-well layers and multiple barrier layers, which are arranged sequentially in an alternating manner along a growth direction, wherein the multi-quantum-well structure has at least one emission region and multiple transport regions which are arranged sequentially in an alternating manner in a direction perpendicular to the growth direction, wherein at least one of the quantum-well layers and the barrier layers are thinner in the transport regions than in the emission regions, and wherein the quantum-well layers in the transport regions and in the emission regions are oriented perpendicularly to the growth direction with exception of a junction region between adjacent transport regions and emission regions.
    Type: Application
    Filed: March 29, 2016
    Publication date: March 1, 2018
    Inventors: Asako Hirai, Tobias Meyer, Philipp Drechsel, Peter Stauß, Anna Nirschl, Alvaro Gomez-Iglesias, Tobias Niebling, Bastian Galler
  • Publication number: 20180062029
    Abstract: The invention relates to an optoelectronic semiconductor element (100) comprising a semiconductor layer sequence (1) with a first layer (10) of a first conductivity type, a second layer (12) of a second conductivity type, and an active layer (11) which is arranged between the first layer (10) and the second layer (12) and which absorbs or emits electromagnetic radiation when operated as intended. The semiconductor element (100) is equipped with a plurality of injection regions (2) which are arranged adjacently to one another in a lateral direction, wherein the semiconductor layer sequence (1) is doped within each injection region (2) such that the semiconductor layer sequence (1) has the same conductivity type as the first layer (10) within the entire injection region (2). Each injection region (2) passes at least partly through the active layer (11) starting from the first layer (10).
    Type: Application
    Filed: March 24, 2016
    Publication date: March 1, 2018
    Inventors: Alvaro GOMEZ-IGLESIAS, Asako HIRAI
  • Patent number: 9828695
    Abstract: A nonpolar III-nitride film grown on a miscut angle of a substrate, in order to suppress the surface undulations, is provided. The surface morphology of the film is improved with a miscut angle towards an a-axis direction comprising a 0.15° or greater miscut angle towards the a-axis direction and a less than 30° miscut angle towards the a-axis direction.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: November 28, 2017
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Asako Hirai, Zhongyuan Jia, Makoto Saito, Hisashi Yamada, Kenji Iso, Steven P. DenBaars, Shuji Nakamura, James S. Speck
  • Publication number: 20170327969
    Abstract: A nonpolar III-nitride film grown on a miscut angle of a substrate. The miscut angle towards the <000-1> direction is 0.75° or greater miscut and less than 27° miscut towards the <000-1> direction. Surface undulations are suppressed and may comprise faceted pyramids. A device fabricated using the film is also disclosed. A nonpolar III-nitride film having a smooth surface morphology fabricated using a method comprising selecting a miscut angle of a substrate upon which the nonpolar III-nitride films are grown in order to suppress surface undulations of the nonpolar III-nitride films. A nonpolar III-nitride-based device grown on a film having a smooth surface morphology grown on a miscut angle of a substrate which the nonpolar III-nitride films are grown. The miscut angle may also be selected to achieve long wavelength light emission from the nonpolar film.
    Type: Application
    Filed: May 26, 2017
    Publication date: November 16, 2017
    Applicant: The Regents of the University of California
    Inventors: Kenji Iso, Hisashi Yamada, Makoto Saito, Asako Hirai, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Publication number: 20160230312
    Abstract: A nonpolar III-nitride film grown on a miscut angle of a substrate, in order to suppress the surface undulations, is provided. The surface morphology of the film is improved with a miscut angle towards an ?-axis direction comprising a 0.15° or greater miscut angle towards the ?-axis direction and a less than 30° miscut angle towards the ?-axis direction.
    Type: Application
    Filed: April 20, 2016
    Publication date: August 11, 2016
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Asako Hirai, Zhongyuan Jia, Makoto Saito, Hisashi Yamada, Kenji Iso, Steven P. DenBaars, Shuji Nakamura, James S. Speck
  • Patent number: 9340899
    Abstract: A nonpolar III-nitride film grown on a miscut angle of a substrate, in order to suppress the surface undulations, is provided. The surface morphology of the film is improved with a miscut angle towards an a-axis direction comprising a 0.15° or greater miscut angle towards the a-axis direction and a less than 30° miscut angle towards the a-axis direction.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: May 17, 2016
    Assignee: The Regents of the University of California
    Inventors: Asako Hirai, Zhongyuan Jia, Makoto Saito, Hisashi Yamada, Kenji Iso, Steven P. DenBaars, Shuji Nakamura, James S. Speck
  • Publication number: 20140291694
    Abstract: A nonpolar III-nitride film grown on a miscut angle of a substrate, in order to suppress the surface undulations, is provided. The surface morphology of the film is improved with a miscut angle towards an a-axis direction comprising a 0.15° or greater miscut angle towards the a-axis direction and a less than 30° miscut angle towards the a-axis direction.
    Type: Application
    Filed: June 16, 2014
    Publication date: October 2, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Asako Hirai, Zhongyuan Jia, Makoto Saito, Hisashi Yamada, Kenji Iso, Steven P. DenBaars, Shuji Nakamura, James S. Speck
  • Patent number: 8791000
    Abstract: A nonpolar III-nitride film grown on a miscut angle of a substrate, in order to suppress the surface undulations, is provided. The surface morphology of the film is improved with a miscut angle towards an a-axis direction comprising a 0.15° or greater miscut angle towards the a-axis direction and a less than 30° miscut angle towards the a-axis direction.
    Type: Grant
    Filed: January 27, 2014
    Date of Patent: July 29, 2014
    Assignee: The Regents of the University of California
    Inventors: Asako Hirai, Zhongyuan Jia, Makoto Saito, Hisashi Yamada, Kenji Iso, Steven P. DenBaars, Shuji Nakamura, James S. Speck
  • Publication number: 20140138679
    Abstract: A nonpolar III-nitride film grown on a miscut angle of a substrate, in order to suppress the surface undulations, is provided. The surface morphology of the film is improved with a miscut angle towards an a-axis direction comprising a 0.15° or greater miscut angle towards the a-axis direction and a less than 30° miscut angle towards the a-axis direction.
    Type: Application
    Filed: January 27, 2014
    Publication date: May 22, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Asako Hirai, Zhongyuan Jia, Makoto Saito, Hisashi Yamada, Kenji Iso, Steven P. DenBaars, Shuji Nakamura, James S. Speck