Patents by Inventor Ashish Datey

Ashish Datey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11808138
    Abstract: A method for determining the gas pressure may include generating, via a downhole tool, neutron radiation in a cased wellbore of a geological formation and measuring a response to the neutron radiation. The method may also include determining, via a processor, at least one of a sigma, a neutron porosity, or a fast-neutron cross-section of the formation. Additionally, an equation of state of the gas may be estimated, and a gas pressure of the gas may be determined by solving a relationship, based at least in part on the equation of state, between the gas pressure and the at least one of the sigma, the neutron porosity, or the fast-neutron cross-section.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: November 7, 2023
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Yevgeniy Karpekin, Heri Tanjung, Ashish Datey, Gustavo Dip, David Rose
  • Publication number: 20210318461
    Abstract: A method for determining the gas pressure may include generating, via a downhole tool, neutron radiation in a cased wellbore of a geological formation and measuring a response to the neutron radiation. The method may also include determining, via a processor, at least one of a sigma, a neutron porosity, or a fast-neutron cross-section of the formation. Additionally, an equation of state of the gas may be estimated, and a gas pressure of the gas may be determined by solving a relationship, based at least in part on the equation of state, between the gas pressure and the at least one of the sigma, the neutron porosity, or the fast-neutron cross-section.
    Type: Application
    Filed: October 24, 2019
    Publication date: October 14, 2021
    Inventors: Yevgeniy Karpekin, Heri Tanjung, Ashish Datey, Gustavo Dip, David Rose
  • Patent number: 9753176
    Abstract: Adsorbed gas in a formation may be estimated. Nuclear magnetic resonance (NMR) data for a subsurface geological formation is obtained, and at least a portion of the NMR data is corrected to produce corrected NMR data. A NMR-based estimate of formation porosity is determined using the corrected NMR data. Dielectric permittivity data for the subsurface geological formation is obtained, and a dielectric permittivity-based estimate of the formation water-filled porosity is determined using the dielectric permittivity data. A gas volume is determined using the determined NMR-based estimate of the formation porosity and the determined dielectric permittivity-based estimate of the formation water-filled porosity. The gas volume may be determined by subtracting the determined dielectric permittivity-based estimate of the formation water-filled porosity from the determined NMR-based estimate of the formation porosity. The gas volume per unit volume of the formation may be determined using an equation of state.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: September 5, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Ashish Datey, Timothy Andrew John Hopper, Lalitha Venkataramanan
  • Publication number: 20140229112
    Abstract: Adsorbed gas in a formation may be estimated. Nuclear magnetic resonance (NMR) data for a subsurface geological formation is obtained, and at least a portion of the NMR data is corrected to produce corrected NMR data. A NMR-based estimate of formation porosity is determined using the corrected NMR data. Dielectric permittivity data for the subsurface geological formation is obtained, and a dielectric permittivity-based estimate of the formation water-filled porosity is determined using the dielectric permittivity data. A gas volume is determined using the determined NMR-based estimate of the formation porosity and the determined dielectric permittivity-based estimate of the formation water-filled porosity. The gas volume may be determined by subtracting the determined dielectric permittivity-based estimate of the formation water-filled porosity from the determined NMR-based estimate of the formation porosity. The gas volume per unit volume of the formation may be determined using an equation of state.
    Type: Application
    Filed: February 14, 2013
    Publication date: August 14, 2014
    Applicant: Schlumberger Technology Corporation
    Inventors: Ashish Datey, Timothy Andrew John Hopper, Lalitha Venkataramanan