Patents by Inventor Ashish Jagtiani

Ashish Jagtiani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230241615
    Abstract: Described herein are cartridges and devices for operating said cartridges for analyzing a biological sample, such as a blood or saliva sample. Also described herein is an impedance sensor for analyzing a biological sample. Further described herein are methods of determining a cell count or detecting an analyte in a biological sample, which can include transporting the biological sample through a sensor comprising a channel or pore; applying an electrical current or voltage to the channel or pore; detecting an impedance within the channel or pore; and determining a cell count or detecting the analyte based on the detected impedance. Also described herein is an electrowetting electrode array that is configured to transport aqueous solutions using low voltage, such as about 50 volts or less. Further described herein are methods of transporting an aqueous liquid using electrowetting electrodes.
    Type: Application
    Filed: April 12, 2023
    Publication date: August 3, 2023
    Inventor: Ashish JAGTIANI
  • Publication number: 20220362779
    Abstract: Described herein are cartridges and devices for operating said cartridges for analyzing a biological sample, such as a blood or saliva sample. Also described herein is an impedance sensor for analyzing a biological sample. Further described herein are methods of determining a cell count or detecting an analyte in a biological sample, which can include transporting the biological sample through a sensor comprising a channel or pore; applying an electrical current or voltage to the channel or pore; detecting an impedance within the channel or pore; and determining a cell count or detecting the analyte based on the detected impedance. Also described herein is an electrowetting electrode array that is configured to transport aqueous solutions using low voltage, such as about 50 volts or less. Further described herein are methods of transporting an aqueous liquid using electrowetting electrodes.
    Type: Application
    Filed: July 29, 2022
    Publication date: November 17, 2022
    Inventor: Ashish JAGTIANI
  • Patent number: 11400452
    Abstract: Described herein are cartridges and devices for operating said cartridges for analyzing a biological sample, such as a blood or saliva sample. Also described herein is an impedance sensor for analyzing a biological sample. Further described herein are methods of determining a cell count or detecting an analyte in a biological sample, which can include transporting the biological sample through a sensor comprising a channel or pore; applying an electrical current or voltage to the channel or pore; detecting an impedance within the channel or pore; and determining a cell count or detecting the analyte based on the detected impedance. Also described herein is an electrowetting electrode array that is configured to transport aqueous solutions using low voltage, such as about 50 volts or less. Further described herein are methods of transporting an aqueous liquid using electrowetting electrodes.
    Type: Grant
    Filed: February 22, 2022
    Date of Patent: August 2, 2022
    Assignee: CHRONUS HEALTH, INC.
    Inventor: Ashish Jagtiani
  • Publication number: 20220176378
    Abstract: Described herein are cartridges and devices for operating said cartridges for analyzing a biological sample, such as a blood or saliva sample. Also described herein is an impedance sensor for analyzing a biological sample. Further described herein are methods of determining a cell count or detecting an analyte in a biological sample, which can include transporting the biological sample through a sensor comprising a channel or pore; applying an electrical current or voltage to the channel or pore; detecting an impedance within the channel or pore; and determining a cell count or detecting the analyte based on the detected impedance. Also described herein is an electrowetting electrode array that is configured to transport aqueous solutions using low voltage, such as about 50 volts or less. Further described herein are methods of transporting an aqueous liquid using electrowetting electrodes.
    Type: Application
    Filed: February 22, 2022
    Publication date: June 9, 2022
    Inventor: Ashish JAGTIANI
  • Publication number: 20210229102
    Abstract: Described herein are cartridges and devices for operating said cartridges for analyzing a biological sample, such as a blood or saliva sample. Also described herein is an impedance sensor for analyzing a biological sample. Further described herein are methods of determining a cell count or detecting an analyte in a biological sample, which can include transporting the biological sample through a sensor comprising a channel or pore; applying an electrical current or voltage to the channel or pore; detecting an impedance within the channel or pore; and determining a cell count or detecting the analyte based on the detected impedance. Also described herein is an electrowetting electrode array that is configured to transport aqueous solutions using low voltage, such as about 50 volts or less. Further described herein are methods of transporting an aqueous liquid using electrowetting electrodes.
    Type: Application
    Filed: June 5, 2019
    Publication date: July 29, 2021
    Inventor: Ashish JAGTIANI
  • Patent number: 9110014
    Abstract: An apparatus comprises: a sensing element formed on a buried oxide layer of a substrate and providing communication between a source region and a drain region; a gate dielectric layer on the sensing element, the gate dielectric layer defining a sensing surface on the sensing element; a passive surface surrounding the sensing surface; and a compound bound to the sensing surface and not bound to the passive surface, the compound having a ligand specifically configured to preferentially bind a target molecule to be sensed. An electrolyte solution in contact with the sensing surface and the passive surface forms a top gate of the apparatus.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: August 18, 2015
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Christopher P. D'Emic, Ashish Jagtiani, Sufi Zafar
  • Patent number: 9103770
    Abstract: A mechanism is provided for determining an isoelectric point of a molecule. A first group of capacitance versus voltage curves of a capacitor is measured. The capacitor includes a substrate, dielectric layer, and conductive solution. The first group of curves is measured for pH values of the solution without the molecule bound to a functionalized material on the dielectric layer of the capacitor. A second group of capacitance versus voltage curves of the capacitor is measured when the molecule is present in the solution, where the molecule is bound to the functionalized material of the dielectric layer of the capacitor. A shift is determined in the second group of curves from the first group of curves at each pH value. The isoelectric point of the molecule is determined by extrapolating a pH value corresponding to a shift voltage being zero, when the shift is compared to the pH values.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: August 11, 2015
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Christopher P. D'Emic, Ashish Jagtiani, Sufi Zafar
  • Publication number: 20150137191
    Abstract: An apparatus comprises: a sensing element formed on a buried oxide layer of a substrate and providing communication between a source region and a drain region; a gate dielectric layer on the sensing element, the gate dielectric layer defining a sensing surface on the sensing element; a passive surface surrounding the sensing surface; and a compound bound to the sensing surface and not bound to the passive surface, the compound having a ligand specifically configured to preferentially bind a target molecule to be sensed. An electrolyte solution in contact with the sensing surface and the passive surface forms a top gate of the apparatus.
    Type: Application
    Filed: December 12, 2014
    Publication date: May 21, 2015
    Inventors: Ali Afzali-Ardakani, Christopher P. D'Emic, Ashish Jagtiani, Sufi Zafar
  • Patent number: 8999739
    Abstract: An apparatus comprises: a sensing element formed on a buried oxide layer of a substrate and providing communication between a source region and a drain region; a gate dielectric layer on the sensing element, the gate dielectric layer defining a sensing surface on the sensing element; a passive surface surrounding the sensing surface; and a compound bound to the sensing surface and not bound to the passive surface, the compound having a ligand specifically configured to preferentially bind a target molecule to be sensed. An electrolyte solution in contact with the sensing surface and the passive surface forms a top gate of the apparatus.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: April 7, 2015
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Christopher P. D'Emic, Ashish Jagtiani, Sufi Zafar
  • Patent number: 8994077
    Abstract: An apparatus comprises: a sensing element formed on a buried oxide layer of a substrate and providing communication between a source region and a drain region; a gate dielectric layer on the sensing element, the gate dielectric layer defining a sensing surface on the sensing element; a passive surface surrounding the sensing surface; and a compound bound to the sensing surface and not bound to the passive surface, the compound having a ligand specifically configured to preferentially bind a target molecule to be sensed. An electrolyte solution in contact with the sensing surface and the passive surface forms a top gate of the apparatus.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: March 31, 2015
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Christopher P. D'Emic, Ashish Jagtiani, Sufi Zafar
  • Patent number: 8917096
    Abstract: A mechanism is provided for determining an isoelectric point of a molecule. A first group of capacitance versus voltage curves of a capacitor is measured. The capacitor includes a substrate, dielectric layer, and conductive solution. The first group of curves is measured for pH values of the solution without the molecule bound to a functionalized material on the dielectric layer of the capacitor. A second group of capacitance versus voltage curves of the capacitor is measured when the molecule is present in the solution, where the molecule is bound to the functionalized material of the dielectric layer of the capacitor. A shift is determined in the second group of curves from the first group of curves at each pH value. The isoelectric point of the molecule is determined by extrapolating a pH value corresponding to a shift voltage being zero, when the shift is compared to the pH values.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: December 23, 2014
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Christopher P. D'Emic, Ashish Jagtiani, Sufi Zafar
  • Publication number: 20140179047
    Abstract: An apparatus comprises: a sensing element formed on a buried oxide layer of a substrate and providing communication between a source region and a drain region; a gate dielectric layer on the sensing element, the gate dielectric layer defining a sensing surface on the sensing element; a passive surface surrounding the sensing surface; and a compound bound to the sensing surface and not bound to the passive surface, the compound having a ligand specifically configured to preferentially bind a target molecule to be sensed. An electrolyte solution in contact with the sensing surface and the passive surface forms a top gate of the apparatus.
    Type: Application
    Filed: August 13, 2013
    Publication date: June 26, 2014
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Christopher P. D'Emic, Ashish Jagtiani, Sufi Zafar
  • Publication number: 20140175522
    Abstract: An apparatus comprises: a sensing element formed on a buried oxide layer of a substrate and providing communication between a source region and a drain region; a gate dielectric layer on the sensing element, the gate dielectric layer defining a sensing surface on the sensing element; a passive surface surrounding the sensing surface; and a compound bound to the sensing surface and not bound to the passive surface, the compound having a ligand specifically configured to preferentially bind a target molecule to be sensed. An electrolyte solution in contact with the sensing surface and the passive surface forms a top gate of the apparatus.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Christopher P. D'Emic, Ashish Jagtiani, Sufi Zafar
  • Publication number: 20140132276
    Abstract: A mechanism is provided for determining an isoelectric point of a molecule. A first group of capacitance versus voltage curves of a capacitor is measured. The capacitor includes a substrate, dielectric layer, and conductive solution. The first group of curves is measured for pH values of the solution without the molecule bound to a functionalized material on the dielectric layer of the capacitor. A second group of capacitance versus voltage curves of the capacitor is measured when the molecule is present in the solution, where the molecule is bound to the functionalized material of the dielectric layer of the capacitor. A shift is determined in the second group of curves from the first group of curves at each pH value. The isoelectric point of the molecule is determined by extrapolating a pH value corresponding to a shift voltage being zero, when the shift is compared to the pH values.
    Type: Application
    Filed: August 20, 2013
    Publication date: May 15, 2014
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Christopher P. D'Emic, Ashish Jagtiani, Sufi Zafar
  • Publication number: 20140132275
    Abstract: A mechanism is provided for determining an isoelectric point of a molecule. A first group of capacitance versus voltage curves of a capacitor is measured. The capacitor includes a substrate, dielectric layer, and conductive solution. The first group of curves is measured for pH values of the solution without the molecule bound to a functionalized material on the dielectric layer of the capacitor. A second group of capacitance versus voltage curves of the capacitor is measured when the molecule is present in the solution, where the molecule is bound to the functionalized material of the dielectric layer of the capacitor. A shift is determined in the second group of curves from the first group of curves at each pH value. The isoelectric point of the molecule is determined by extrapolating a pH value corresponding to a shift voltage being zero, when the shift is compared to the pH values.
    Type: Application
    Filed: November 15, 2012
    Publication date: May 15, 2014
    Applicant: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Christopher P. D'Emic, Ashish Jagtiani, Sufi Zafar