Patents by Inventor Ashish K. Jha

Ashish K. Jha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230078098
    Abstract: A pre-loaded cleaning substrate, and related systems and methods for picking up particles with an aspect ratio (L/D) greater than 300 (e.g., hair), or greater than 1200 (e.g., particularly long hairs). The substrate (e.g., a nonwoven) may include only a single layer of material. The pre-loaded substrate is loaded (e.g., during manufacture) with a cleaning composition. The fibers of the substrate may have an average diameter less than 15 ?m, the substrate may have an air permeability of 35 ft3/min to 75 ft3/min, and the liquid cleaning composition may have a surface tension of less than about 50 dynes/cm. Together, the combination of the particular substrate and cleaning composition may facilitate markedly improved ability to pick up high L/D aspect ratio particle debris (e.g., such as hair), while retaining such particles (e.g., providing hair retention index values of at least 20).
    Type: Application
    Filed: November 15, 2022
    Publication date: March 16, 2023
    Inventors: Ashish K. Jha, Nikhil P. Dani, David R. Scheuing, Nancy A. Falk, Bryan K. Parrish
  • Patent number: 11541431
    Abstract: A pre-loaded cleaning substrate, and related systems and methods for picking up particles with an aspect ratio (L/D) greater than 300 (e.g., hair), or greater than 1200 (e.g., particularly long hairs). The substrate (e.g., a nonwoven) may include only a single layer of material. The pre-loaded substrate is loaded (e.g., during manufacture) with a cleaning composition. The fibers of the substrate may have an average diameter less than 15 ?m, the substrate may have an air permeability of 35 ft3/min to 75 ft3/min, and the liquid cleaning composition may have a surface tension of less than about 50 dynes/cm. Together, the combination of the particular substrate and cleaning composition may facilitate markedly improved ability to pick up high L/D aspect ratio particle debris (e.g., such as hair), while retaining such particles (e.g., providing hair retention index values of at least 20).
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: January 3, 2023
    Assignee: The Clorox Company
    Inventors: Ashish K. Jha, Nikhil P. Dani, David R. Scheuing, Nancy A. Falk, Bryan K. Parrish
  • Patent number: 11433431
    Abstract: A pre-loaded cleaning substrate, and related systems and methods for picking up particles with an aspect ratio (L/D) greater than 300 (e.g., hair), or greater than 1200 (e.g., particularly long hairs). The substrate (e.g., a nonwoven) may include only a single layer of material. The pre-loaded substrate is loaded (e.g., during manufacture) with a cleaning composition. The fibers of the substrate may have an average diameter less than 15 ?m, the substrate may have an air permeability of 35 ft3/min to 75 ft3/min, and the liquid cleaning composition may have a surface tension of less than about 50 dynes/cm. Together, the combination of the particular substrate and cleaning composition may facilitate markedly improved ability to pick up high L/D aspect ratio particle debris (e.g., such as hair), while retaining such particles (e.g., providing hair retention index values of at least 20).
    Type: Grant
    Filed: April 17, 2020
    Date of Patent: September 6, 2022
    Assignee: The Clorox Company
    Inventors: Ashish K. Jha, Nikhil P. Dani, David R. Scheuing, Nancy A. Falk, Bryan K. Parrish
  • Patent number: 10843233
    Abstract: A pre-loaded cleaning substrate, and related systems and methods for picking up particles with an aspect ratio (L/D) greater than 300 (e.g., hair), or greater than 1200 (e.g., particularly long hairs). The substrate (e.g., a nonwoven) may include only a single layer of material. The pre-loaded substrate is loaded (e.g., during manufacture) with a cleaning composition. The fibers of the substrate may have an average diameter less than 15 ?m, the substrate may have an air permeability of 35 ft3/min to 75 ft3/min, and the liquid cleaning composition may have a surface tension of less than about 50 dynes/cm. Together, the combination of the particular substrate and cleaning composition may facilitate markedly improved ability to pick up high L/D aspect ratio particle debris (e.g., such as hair), while retaining such particles (e.g., providing hair retention index values of at least 20).
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: November 24, 2020
    Assignee: The Clorox Company
    Inventors: Ashish K. Jha, Nikhil P. Dani, David R. Scheuing, Nancy A. Falk, Bryan K. Parrish
  • Publication number: 20200360971
    Abstract: A pre-loaded cleaning substrate, and related systems and methods for picking up particles with an aspect ratio (L/D) greater than 300 (e.g., hair), or greater than 1200 (e.g., particularly long hairs). The substrate (e.g., a nonwoven) may include only a single layer of material. The pre-loaded substrate is loaded (e.g., during manufacture) with a cleaning composition. The fibers of the substrate may have an average diameter less than 15 ?m, the substrate may have an air permeability of 35 ft3/min to 75 ft3/min, and the liquid cleaning composition may have a surface tension of less than about 50 dynes/cm. Together, the combination of the particular substrate and cleaning composition may facilitate markedly improved ability to pick up high L/D aspect ratio particle debris (e.g., such as hair), while retaining such particles (e.g., providing hair retention index values of at least 20).
    Type: Application
    Filed: April 17, 2020
    Publication date: November 19, 2020
    Inventors: Ashish K. Jha, Nikhil P. Dani, David R. Scheuing, Nancy A. Falk, Bryan K. Parrish
  • Publication number: 20200238341
    Abstract: A pre-loaded cleaning substrate, and related systems and methods for picking up particles with an aspect ratio (L/D) greater than 300 (e.g., hair), or greater than 1200 (e.g., particularly long hairs). The substrate (e.g., a nonwoven) may include only a single layer of material. The pre-loaded substrate is loaded (e.g., during manufacture) with a cleaning composition. The fibers of the substrate may have an average diameter less than 15 ?m, the substrate may have an air permeability of 35 ft3/min to 75 ft3/min, and the liquid cleaning composition may have a surface tension of less than about 50 dynes/cm. Together, the combination of the particular substrate and cleaning composition may facilitate markedly improved ability to pick up high L/D aspect ratio particle debris (e.g., such as hair), while retaining such particles (e.g., providing hair retention index values of at least 20).
    Type: Application
    Filed: April 17, 2020
    Publication date: July 30, 2020
    Inventors: Ashish K. Jha, Nikhil P. Dani, David R. Scheuing, Nancy A. Falk, Bryan K. Parrish
  • Publication number: 20190329299
    Abstract: A pre-loaded cleaning substrate, and related systems and methods for picking up particles with an aspect ratio (L/D) greater than 300 (e.g., hair), or greater than 1200 (e.g., particularly long hairs). The substrate (e.g., a nonwoven) may include only a single layer of material. The pre-loaded substrate is loaded (e.g., during manufacture) with a cleaning composition. The fibers of the substrate may have an average diameter less than 15 ?m, the substrate may have an air permeability of 35 ft3/min to 75 ft3/min, and the liquid cleaning composition may have a surface tension of less than about 50 dynes/cm. Together, the combination of the particular substrate and cleaning composition may facilitate markedly improved ability to pick up high L/D aspect ratio particle debris (e.g., such as hair), while retaining such particles (e.g., providing hair retention index values of at least 20).
    Type: Application
    Filed: April 27, 2018
    Publication date: October 31, 2019
    Inventors: Ashish K. Jha, Nikhil P. Dani, David R. Scheuing, Nancy A. Falk, Bryan K. Parrish
  • Publication number: 20180192681
    Abstract: Packaged food compositions including but not limited to emulsified salad dressings (e.g., an oil/water emulsion) that contain calcium carbonate and phosphoric acid. Under conditions present in the salad dressing, the calcium carbonate reacts with the phosphoric acid to form surface modified calcium carbonate particles that dissolve over the shelf-life of the salad dressing to slowly release CO2 into the emulsion, resulting in a whipped, bodied texture for the salad dressing within the bottle or other container.
    Type: Application
    Filed: December 15, 2017
    Publication date: July 12, 2018
    Inventors: Maria G. Ochomogo, Ashwini Wagh, Edith Ramos da Conceicao Neta, Kenneth L. Vieira, Vidya Ananth, Hubert Chan, Ashish K. Jha
  • Patent number: 9346921
    Abstract: The present disclosure relates to high molecular weight polystyrene-polydialkylsiloxane-polystyrene (“SDS”) triblock copolymer compositions and methods of separating one or more organic compounds from an aqueous solution using membranes derived from SDS triblock copolymers. The methods may be used to separate the one or more organic compounds from an aqueous solution produced in a fermentation process. In some embodiments, the one or more organic compounds include an alcohol, such as, for example, ethanol. In other embodiments, the one or more organic compounds include acetone. In other embodiments, the one or more organic compounds include acetone, ethanol, and n-butanol produced in an acetone-ethanol-n-butanol (ABE) fermentation process. In other embodiments, the one or more organic compounds include one or more byproducts produced in a fermentation process.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: May 24, 2016
    Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Nitash P. Balsara, Ali Evren Ozcam, Ashish K. Jha
  • Publication number: 20140364567
    Abstract: The present disclosure relates to high molecular weight polystyrene-polydialkylsiloxane-polystyrene (“SDS”) triblock copolymer compositions and methods of separating one or more organic compounds from an aqueous solution using membranes derived from SDS triblock copolymers. The methods may be used to separate the one or more organic compounds from an aqueous solution produced in a fermentation process. In some embodiments, the one or more organic compounds include an alcohol, such as, for example, ethanol. In other embodiments, the one or more organic compounds include acetone. In other embodiments, the one or more organic compounds include acetone, ethanol, and n-butanol produced in an acetone-ethanol-n-butanol (ABE) fermentation process. In other embodiments, the one or more organic compounds include one or more byproducts produced in a fermentation process.
    Type: Application
    Filed: November 9, 2012
    Publication date: December 11, 2014
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Nitash P. Balsara, Ali Evren Ozcam, Ashish K. Jha
  • Patent number: 8900940
    Abstract: In general, aspects of the present invention relate to approaches for forming a semiconductor device such as a FET with reduced gate stack height variance. Specifically, when a gate stack height variance is detected/identified between a set of gate stacks, a hard mask layer and sets of spacers are removed from the uneven gate stacks leaving behind (among other things) a set of dummy gates. A liner layer and an inter-layer dielectric are formed over the set of dummy gates. The liner layer is then removed from a top surface (or at least a portion thereof) of the set of dummy gates, and the set of dummy gates are then removed. The result is a set of gate regions having less height variance/disparity.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: December 2, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Ashish K. Jha, Tae-Hoon Kim, Tae Hoon Lee, Chang Ho Maeng, Songkram Srivathanakul, Haiting Wang
  • Publication number: 20140193957
    Abstract: In general, aspects of the present invention relate to approaches for forming a semiconductor device such as a FET with reduced gate stack height variance. Specifically, when a gate stack height variance is detected/identified between a set of gate stacks, a hard mask layer and sets of spacers are removed from the uneven gate stacks leaving behind (among other things) a set of dummy gates. A liner layer and an inter-layer dielectric are formed over the set of dummy gates. The liner layer is then removed from a top surface (or at least a portion thereof) of the set of dummy gates, and the set of dummy gates are then removed. The result is a set of gate regions having less height variance/disparity.
    Type: Application
    Filed: January 10, 2013
    Publication date: July 10, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Ashish K. Jha, Tae-Hoon Kim, Tae Hoon Lee, Chang Ho Maeng, Songkram Srivathanakul, Haiting Wang
  • Patent number: 8440765
    Abstract: The present invention relates to copolymer compositions for alcohol-selective membranes and methods of selectively separating an alcohol such as ethanol from an aqueous solution using such membranes. The copolymer compositions may be block copolymers of polystyrene-polybutadiene-polystyrene (hereafter “SBS”) having cylindrical morphologies; graft diblock copolymers synthesized by ring-opening metathesis polymerization of two cycloalkene monomers, wherein at least one of the cycloalkene monomers is substituted with one or more polydialkylsiloxane groups; or triblock copolymers comprising a middle block comprising a polymerized cycloalkene monomer and two end groups. The synthesized graft and triblock copolymer compositions may have a spherical, lamellar, cylindrical, double diamond, or gyroid morphologies. The copolymer compositions may contain a structural block that imparts essential mechanical properties to the membrane (e.g., polystyrene) and may also contain an alcohol transporting block (e.g.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: May 14, 2013
    Assignee: The Regents of the University of California
    Inventors: Nitash P. Balsara, Ashish K. Jha, Liang Chen
  • Publication number: 20120142865
    Abstract: The present invention relates to copolymer compositions for alcohol-selective membranes and methods of selectively separating an alcohol such as ethanol from an aqueous solution using such membranes. The copolymer compositions may be block copolymers of polystyrene-polybutadiene-polystyrene (hereafter “SBS”) having cylindrical morphologies; graft diblock copolymers synthesized by ring-opening metathesis polymerization of two cycloalkene monomers, wherein at least one of the cycloalkene monomers is substituted with one or more polydialkylsiloxane groups; or triblock copolymers comprising a middle block comprising a polymerized cycloalkene monomer and two end groups. The synthesized graft and triblock copolymer compositions may have a spherical, lamellar, cylindrical, double diamond, or gyroid morphologies. The copolymer compositions may contain a structural block that imparts essential mechanical properties to the membrane (e.g., polystyrene) and may also contain an alcohol transporting block (e.g.
    Type: Application
    Filed: March 10, 2011
    Publication date: June 7, 2012
    Applicant: The Regents of the University of California
    Inventors: Nitash P. BALSARA, Ashish K. Jha, Liang Chen