Patents by Inventor Ashish Pandey

Ashish Pandey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240401051
    Abstract: The present disclosure relates to compositions of matter and assay methods used to detect one or more target nucleic acids of interest in a sample. The compositions and methods allow one to control reaction kinetics of the cascade assay by two orders of magnitude via molecular design of one of the reaction components; further, varying molecular design also allows for quantification of target nucleic acids of interest over a large range of concentrations or discriminating between extremely low copy numbers of target nucleic acids of interest.
    Type: Application
    Filed: August 15, 2024
    Publication date: December 5, 2024
    Inventors: Ashish Pandey, Ariana Mostafa, Jacob Berger, Anurup Ganguli
  • Patent number: 12129468
    Abstract: The present disclosure relates to compositions of matter and assay methods used to detect one or more target nucleic acids of interest in a sample. The compositions and methods provide signal boost upon detection of target nucleic acids of interest in less than one minute and in some instances instantaneously at ambient temperatures down to 16° C. or less, without amplification of the target nucleic acids yet allowing for massive multiplexing, high accuracy and minimal non-specific signal generation.
    Type: Grant
    Filed: January 31, 2024
    Date of Patent: October 29, 2024
    Assignee: VedaBio, Inc.
    Inventors: Anurup Ganguli, Ashish Pandey, Ariana Mostafa, Jacob Berger
  • Patent number: 12104158
    Abstract: The present disclosure relates to compositions of matter and assay methods used to detect one or more target nucleic acids of interest in a sample. The compositions and methods allow one to control reaction kinetics of the cascade assay by two orders of magnitude via molecular design of one of the reaction components; further, varying molecular design also allows for quantification of target nucleic acids of interest over a large range of concentrations or discriminating between extremely low copy numbers of target nucleic acids of interest.
    Type: Grant
    Filed: February 23, 2024
    Date of Patent: October 1, 2024
    Assignee: VedaBio, Inc.
    Inventors: Ashish Pandey, Ariana Mostafa, Jacob Berger, Anurup Ganguli
  • Patent number: 12091690
    Abstract: The present disclosure relates to variant engineered nucleic acid-guided nucleases that may be used in CRISPR-based cascade assay systems to detect one or more target nucleic acids in a sample. The variant nucleases comprise an activity such that double-stranded DNA substrates do not bind to or are not cleaved by variant LbCas12a nuclease, or bind to or are cleaved very slowly by the variant nuclease, however single-stranded DNA substrates can bind and are cleaved by the variant nuclease, and wherein the variant nuclease exhibits both cis- and trans-cleavage activity.
    Type: Grant
    Filed: January 2, 2024
    Date of Patent: September 17, 2024
    Assignee: VedaBio, Inc.
    Inventors: Andrew Garst, Anurup Ganguli, Ashish Pandey
  • Publication number: 20240228993
    Abstract: The present disclosure relates to variant engineered nucleic acid-guided nucleases that may be used in CRISPR-based cascade assay systems to detect one or more target nucleic acids in a sample.
    Type: Application
    Filed: January 2, 2024
    Publication date: July 11, 2024
    Inventors: Andrew Garst, Anurup Ganguli, Ashish Pandey
  • Publication number: 20240218364
    Abstract: The present disclosure relates to compositions of matter and assay methods used to detect one or more target nucleic acids of interest in a sample. The compositions and methods provide signal boost upon detection of target nucleic acids of interest in less than one minute and in some instances instantaneously at ambient temperatures down to 16° ° C. or less, without amplification of the target nucleic acids yet allowing for massive multiplexing, high accuracy and minimal non-specific signal generation.
    Type: Application
    Filed: January 31, 2024
    Publication date: July 4, 2024
    Inventors: Anurup Ganguli, Ashish Pandey, Ariana Mostafa, Jacob Berger
  • Publication number: 20240218428
    Abstract: The present disclosure describes compositions of matter comprising a ribonucleoprotein complex comprising a nucleic acid-guided nuclease and a guide RNA, and further comprising a blocking nucleic acid molecule represented by Formula IV, wherein Formula IV in the 5?-to-3? direction comprises: T-D-M-A-Lp-C; wherein T is 17-31 nucleotides in length; D is 0-15 nucleotides in length; M is 1-25 nucleotides in length; A is 0-15 nucleotides in length and comprises a sequence complementary to D; and L is 3-25 nucleotides in length; p is 0 or 1; C is 4-15 nucleotides in length and comprises a sequence complementary to T; and wherein the blocking nucleic acid molecule comprises a sequence complementary to a gRNA.
    Type: Application
    Filed: February 25, 2024
    Publication date: July 4, 2024
    Inventors: Ashish Pandey, Anurup Ganguli, Ariana Mostafa, Jacob Berger
  • Publication number: 20240191234
    Abstract: The present disclosure relates to compositions of matter and assay methods used to detect one or more target nucleic acids of interest in a sample. The compositions and methods allow one to control reaction kinetics of the cascade assay by two orders of magnitude via molecular design of one of the reaction components; further, varying molecular design also allows for quantification of target nucleic acids of interest over a large range of concentrations or discriminating between extremely low copy numbers of target nucleic acids of interest.
    Type: Application
    Filed: February 23, 2024
    Publication date: June 13, 2024
    Inventors: Ashish Pandey, Ariana Mostafa, Jacob Berger, Anurup Ganguli
  • Patent number: 11987839
    Abstract: The present disclosure describes compositions of matter comprising a ribonucleoprotein complex comprising a nucleic acid-guided nuclease and a guide RNA, and further comprising a blocking nucleic acid molecule represented by Formula IV, wherein Formula IV in the 5?-to-3? direction comprises: T-D-M-A-Lp-C; wherein T is 17-31 nucleotides in length; D is 0-15 nucleotides in length; M is 1-25 nucleotides in length; A is 0-15 nucleotides in length and comprises a sequence complementary to D; and L is 3-25 nucleotides in length; p is 0 or 1; C is 4-15 nucleotides in length and comprises a sequence complementary to T; and wherein the blocking nucleic acid molecule comprises a sequence complementary to a gRNA.
    Type: Grant
    Filed: September 24, 2023
    Date of Patent: May 21, 2024
    Assignees: VedaBio, Inc., The Board of Trustees of The University of Illinois
    Inventors: Anurup Ganguli, Ariana Mostafa, Jacob Berger, Ashish Pandey
  • Patent number: 11970730
    Abstract: The present disclosure describes compositions of matter comprising a ribonucleoprotein complex comprising a nucleic acid-guided nuclease and a guide RNA, and further comprising and a blocking nucleic acid molecule represented by Formula III in the 5?-to-3? direction comprises: T-D-M-A-(B-L)J-C; wherein T is 17-135 nucleotides in length; D is 0-10 nucleotides in length; M is 1-25 nucleotides in length or is absent, wherein if M is absent then T-D and A-(B-L)J-C are separate nucleic acid strands; A is 0-15 nucleotides in length and comprises at least 50% sequence complementarity to D; B is 4-12 nucleotides in length and comprises at least 50% sequence complementarity to T; L is 3-25 nucleotides in length; J is an integer between 1 and 10; C is 4-15 nucleotides in length; and wherein the blocking nucleic acid molecule comprises a sequence complementary to a gRNA.
    Type: Grant
    Filed: June 10, 2023
    Date of Patent: April 30, 2024
    Assignee: VedaBio, Inc.
    Inventors: Anurup Ganguli, Ariana Mostafa, Jacob Berger, Ashish Pandey, Rashid Bashir
  • Patent number: 11954073
    Abstract: Disclosed are techniques for multi-protocol multi-site file replication, including a method comprising capturing, at a gateway device, IO operations performed on a filesystem, the filesystem having inode bits. The method may further comprise enqueuing the captured IO operations onto a plurality of queues, wherein each of the plurality of queues is associated with one of a plurality of target sites; and independently managing replication of the IO operations to the target sites using the inode bits.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: April 9, 2024
    Assignee: International Business Machines Corporation
    Inventors: Venkateswara Rao Puvvada, Saket Kumar, Karrthik Kalaga Gopalakrishnan, Ashish Pandey
  • Patent number: 11946052
    Abstract: The present disclosure relates to compositions of matter and assay methods used to detect one or more target nucleic acids of interest in a sample. The compositions and methods allow one to control reaction kinetics of the cascade assay by two orders of magnitude via molecular design of one of the reaction components; further, varying molecular design also allows for quantification of target nucleic acids of interest over a large range of concentrations or discriminating between extremely low copy numbers of target nucleic acids of interest.
    Type: Grant
    Filed: November 24, 2023
    Date of Patent: April 2, 2024
    Assignee: VedaBio, Inc.
    Inventors: Ariana Mostafa, Jacob Berger, Ashish Pandey, Anurup Ganguli
  • Publication number: 20240102014
    Abstract: The present disclosure relates to compositions of matter and assay methods used to detect one or more target nucleic acids of interest in a sample. The compositions and methods allow one to control reaction kinetics of the cascade assay by two orders of magnitude via molecular design of one of the reaction components; further, varying molecular design also allows for quantification of target nucleic acids of interest over a large range of concentrations or discriminating between extremely low copy numbers of target nucleic acids of interest.
    Type: Application
    Filed: November 24, 2023
    Publication date: March 28, 2024
    Inventors: Ariana Mostafa, Jacob Berger, Ashish Pandey, Anurup Ganguli
  • Publication number: 20240035028
    Abstract: The present disclosure relates to compositions of matter and assay methods used to detect one or more target nucleic acids of interest in a sample. The compositions and methods provide signal boost upon detection of target nucleic acids of interest in less than one minute and in some instances instantaneously at ambient temperatures down to 16° C. or less, without amplification of the target nucleic acids yet allowing for massive multiplexing, high accuracy and minimal non-specific signal generation.
    Type: Application
    Filed: August 16, 2023
    Publication date: February 1, 2024
    Inventors: Anurup Ganguli, Ashish Pandey, Ariana Mostafa, Jacob Berger
  • Patent number: 11884921
    Abstract: The present disclosure relates to compositions of matter and assay methods used to detect one or more target nucleic acids of interest in a sample. The compositions and methods provide signal boost upon detection of target nucleic acids of interest in less than one minute and in some instances instantaneously at ambient temperatures down to 16° C. or less, without amplification of the target nucleic acids yet allowing for massive multiplexing, high accuracy and minimal non-specific signal generation.
    Type: Grant
    Filed: December 9, 2022
    Date of Patent: January 30, 2024
    Assignee: VedaBio, Inc.
    Inventors: Anurup Ganguli, Ashish Pandey, Ariana Mostafa, Jacob Berger
  • Patent number: 11884922
    Abstract: The present disclosure relates to compositions of matter and assay methods used to detect one or more target nucleic acids of interest in a sample. The compositions and methods allow one to control reaction kinetics of the cascade assay by two orders of magnitude via molecular design of one of the reaction components; further, varying molecular design also allows for quantification of target nucleic acids of interest over a large range of concentrations or discriminating between extremely low copy numbers of target nucleic acids of interest.
    Type: Grant
    Filed: June 10, 2023
    Date of Patent: January 30, 2024
    Assignee: VedaBio, Inc.
    Inventors: Ariana Mostafa, Jacob Berger, Ashish Pandey, Anurup Ganguli
  • Publication number: 20240026425
    Abstract: The present disclosure describes compositions of matter comprising a ribonucleoprotein complex comprising a nucleic acid-guided nuclease and a guide RNA, and further comprising and a blocking nucleic acid molecule represented by Formula IV, wherein Formula IV in the 5?-to-3? direction comprises: T-D-M-A-Lp-C; wherein T is 17-31 nucleotides in length; D is 0-15 nucleotides in length; M is 1-25 nucleotides in length; A is 0-15 nucleotides in length and comprises a sequence complementary to D; and L is 3-25 nucleotides in length; p is 0 or 1; C is 4-15 nucleotides in length and comprises a sequence complementary to T; and wherein the blocking nucleic acid molecule comprises a sequence complementary to a gRNA.
    Type: Application
    Filed: September 24, 2023
    Publication date: January 25, 2024
    Inventors: Anurup Ganguli, Ariana Mostafa, Jacob Berger, Ashish Pandey, Rashid Bashir
  • Publication number: 20240018518
    Abstract: The present disclosure relates to compositions of matter and assay methods used to detect one or more target nucleic acids of interest in a sample. The compositions and methods allow one to control reaction kinetics of the cascade assay by two orders of magnitude via molecular design of one of the reaction components; further, varying molecular design also allows for quantification of target nucleic acids of interest over a large range of concentrations or discriminating between extremely low copy numbers of target nucleic acids of interest.
    Type: Application
    Filed: June 10, 2023
    Publication date: January 18, 2024
    Inventors: Ariana Mostafa, Jacob Berger, Ashish Pandey, Anurup Ganguli
  • Patent number: 11859182
    Abstract: The present disclosure relates to compositions of matter and assay methods used to detect one or more target nucleic acids of interest in a sample. The compositions and methods allow one to control reaction kinetics of the cascade assay by two orders of magnitude via molecular design of one of the reaction components; further, varying molecular design also allows for quantification of target nucleic acids of interest over a large range of concentrations or discriminating between extremely low copy numbers of target nucleic acids of interest.
    Type: Grant
    Filed: May 31, 2023
    Date of Patent: January 2, 2024
    Assignee: VedaBio, Inc.
    Inventors: Anurup Ganguli, Ariana Mostafa, Jacob Berger, Ashish Pandey
  • Publication number: 20230399682
    Abstract: The present disclosure describes compositions of matter comprising a ribonucleoprotein complex comprising a nucleic acid-guided nuclease and a guide RNA, and further comprising and a blocking nucleic acid molecule represented by Formula III in the 5?-to-3? direction comprises: T-D-M-A-(B-L)J-C; wherein T is 17-135 nucleotides in length; D is 0-10 nucleotides in length; M is 1-25 nucleotides in length or is absent, wherein if M is absent then T-D and A-(B-L)J-C are separate nucleic acid strands; A is 0-15 nucleotides in length and comprises at least 50% sequence complementarity to D; B is 4-12 nucleotides in length and comprises at least 50% sequence complementarity to T; L is 3-25 nucleotides in length; J is an integer between 1 and 10; C is 4-15 nucleotides in length; and wherein the blocking nucleic acid molecule comprises a sequence complementary to a gRNA.
    Type: Application
    Filed: June 10, 2023
    Publication date: December 14, 2023
    Inventors: Anurup Ganguli, Ariana Mostafa, Jacob Berger, Ashish Pandey, Rashid Bashir