Patents by Inventor Ashish Teku Vaswani
Ashish Teku Vaswani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12142034Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output image. In one aspect, one of the methods includes generating the output image intensity value by intensity value according to a generation order of pixel-color channel pairs from the output image, comprising, for each particular generation order position in the generation order: generating a current output image representation of a current output image, processing the current output image representation using a decoder neural network to generate a probability distribution over possible intensity values for the pixel-color channel pair at the particular generation order position, wherein the decoder neural network includes one or more local masked self-attention sub-layers; and selecting an intensity value for the pixel-color channel pair at the particular generation order position using the probability distribution.Type: GrantFiled: November 8, 2023Date of Patent: November 12, 2024Assignee: Google LLCInventors: Noam M. Shazeer, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Niki J. Parmar, Ashish Teku Vaswani
-
Publication number: 20240193926Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output image. In one aspect, one of the methods includes generating the output image intensity value by intensity value according to a generation order of pixel-color channel pairs from the output image, comprising, for each particular generation order position in the generation order: generating a current output image representation of a current output image, processing the current output image representation using a decoder neural network to generate a probability distribution over possible intensity values for the pixel-color channel pair at the particular generation order position, wherein the decoder neural network includes one or more local masked self-attention sub-layers; and selecting an intensity value for the pixel-color channel pair at the particular generation order position using the probability distribution.Type: ApplicationFiled: November 8, 2023Publication date: June 13, 2024Inventors: Noam M. Shazeer, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Niki J. Parmar, Ashish Teku Vaswani
-
Publication number: 20240144006Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. In one aspect, one of the systems includes an encoder neural network configured to receive the input sequence and generate encoded representations of the network inputs, the encoder neural network comprising a sequence of one or more encoder subnetworks, each encoder subnetwork configured to receive a respective encoder subnetwork input for each of the input positions and to generate a respective subnetwork output for each of the input positions, and each encoder subnetwork comprising: an encoder self-attention sub-layer that is configured to receive the subnetwork input for each of the input positions and, for each particular input position in the input order: apply an attention mechanism over the encoder subnetwork inputs using one or more queries derived from the encoder subnetwork input at the particular input position.Type: ApplicationFiled: January 8, 2024Publication date: May 2, 2024Inventors: Noam M. Shazeer, Aidan Nicholas Gomez, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Llion Owen Jones, Niki J. Parmar, Illia Polosukhin, Ashish Teku Vaswani
-
Patent number: 11893483Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. In one aspect, one of the systems includes an encoder neural network configured to receive the input sequence and generate encoded representations of the network inputs, the encoder neural network comprising a sequence of one or more encoder subnetworks, each encoder subnetwork configured to receive a respective encoder subnetwork input for each of the input positions and to generate a respective subnetwork output for each of the input positions, and each encoder subnetwork comprising: an encoder self-attention sub-layer that is configured to receive the subnetwork input for each of the input positions and, for each particular input position in the input order: apply an attention mechanism over the encoder subnetwork inputs using one or more queries derived from the encoder subnetwork input at the particular input position.Type: GrantFiled: August 7, 2020Date of Patent: February 6, 2024Assignee: Google LLCInventors: Noam M. Shazeer, Aidan Nicholas Gomez, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Llion Owen Jones, Niki J. Parmar, Illia Polosukhin, Ashish Teku Vaswani
-
Patent number: 11816884Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output image. In one aspect, one of the methods includes generating the output image intensity value by intensity value according to a generation order of pixel—color channel pairs from the output image, comprising, for each particular generation order position in the generation order: generating a current output image representation of a current output image, processing the current output image representation using a decoder neural network to generate a probability distribution over possible intensity values for the pixel—color channel pair at the particular generation order position, wherein the decoder neural network includes one or more local masked self-attention sub-layers; and selecting an intensity value for the pixel—color channel pair at the particular generation order position using the probability distribution.Type: GrantFiled: July 18, 2022Date of Patent: November 14, 2023Assignee: Google LLCInventors: Noam M. Shazeer, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Niki J. Parmar, Ashish Teku Vaswani
-
Publication number: 20230076971Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output image. In one aspect, one of the methods includes generating the output image intensity value by intensity value according to a generation order of pixel—color channel pairs from the output image, comprising, for each particular generation order position in the generation order: generating a current output image representation of a current output image, processing the current output image representation using a decoder neural network to generate a probability distribution over possible intensity values for the pixel—color channel pair at the particular generation order position, wherein the decoder neural network includes one or more local masked self-attention sub-layers; and selecting an intensity value for the pixel—color channel pair at the particular generation order position using the probability distribution.Type: ApplicationFiled: July 18, 2022Publication date: March 9, 2023Inventors: Noam M. Shazeer, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Niki J. Parmar, Ashish Teku Vaswani
-
Patent number: 11494561Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media for training a machine learning model to perform multiple machine learning tasks from multiple machine learning domains. One system includes a machine learning model that includes multiple input modality neural networks corresponding to respective different modalities and being configured to map received data inputs of the corresponding modality to mapped data inputs from a unified representation space; an encoder neural network configured to process mapped data inputs from the unified representation space to generate respective encoder data outputs; a decoder neural network configured to process encoder data outputs to generate respective decoder data outputs from the unified representation space; and multiple output modality neural networks corresponding to respective different modalities and being configured to map decoder data outputs to data outputs of the corresponding modality.Type: GrantFiled: August 4, 2020Date of Patent: November 8, 2022Assignee: Google LLCInventors: Noam M. Shazeer, Aidan Nicholas Gomez, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Llion Owen Jones, Niki J. Parmar, Ashish Teku Vaswani
-
Patent number: 11392790Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output image. In one aspect, one of the methods includes generating the output image intensity value by intensity value according to a generation order of pixel—color channel pairs from the output image, comprising, for each particular generation order position in the generation order: generating a current output image representation of a current output image, processing the current output image representation using a decoder neural network to generate a probability distribution over possible intensity values for the pixel—color channel pair at the particular generation order position, wherein the decoder neural network includes one or more local masked self-attention sub-layers; and selecting an intensity value for the pixel—color channel pair at the particular generation order position using the probability distribution.Type: GrantFiled: November 13, 2020Date of Patent: July 19, 2022Assignee: Google LLCInventors: Noam M. Shazeer, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Niki J. Parmar, Ashish Teku Vaswani
-
Publication number: 20220215654Abstract: A system implemented as computer programs on one or more computers in one or more locations that implements a computer vision model is described. The computer vision model includes a positional local self-attention layer that is configured to receive an input feature map and to generate an output feature map. For each input element in the input feature map, the positional local self-attention layer generates a respective output element for the output feature map by generating a memory block including neighboring input elements around the input element, generates a query vector using the input element and a query weight matrix, for each neighboring element in the memory block, performs positional local self-attention operations to generate a temporary output element, and generates the respective output element by summing temporary output elements of the neighboring elements in the memory block.Type: ApplicationFiled: May 22, 2020Publication date: July 7, 2022Inventors: Jonathon Shlens, Ashish Teku Vaswani, Niki J. Parmar, Prajit Ramachandran, Anselm Caelifer Levskaya, Irwan Bello
-
Publication number: 20220051099Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. In one aspect, one of the systems includes an encoder neural network configured to receive the input sequence and generate encoded representations of the network inputs, the encoder neural network comprising a sequence of one or more encoder subnetworks, each encoder subnetwork configured to receive a respective encoder subnetwork input for each of the input positions and to generate a respective subnetwork output for each of the input positions, and each encoder subnetwork comprising: an encoder self-attention sub-layer that is configured to receive the subnetwork input for each of the input positions and, for each particular input position in the input order: apply an attention mechanism over the encoder subnetwork inputs using one or more queries derived from the encoder subnetwork input at the particular input position.Type: ApplicationFiled: September 3, 2021Publication date: February 17, 2022Inventors: Noam M. Shazeer, Aidan Nicholas Gomez, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Llion Owen Jones, Niki J. Parmar, Illia Polosukhin, Ashish Teku Vaswani
-
Publication number: 20210390410Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media, for processing images using a computer vision neural network that has one or more local self-attention layers. Each local self-attention layer is configured to apply or more local self-attention mechanisms to the layer input to the local self-attention layer.Type: ApplicationFiled: June 14, 2021Publication date: December 16, 2021Inventors: Ashish Teku Vaswani, Prajit Ramachandran, Aravind Srinivas Lakshminarayanan, Blake Alan Hechtman, Niki J. Parmar
-
Patent number: 11113602Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. In one aspect, one of the systems includes an encoder neural network configured to receive the input sequence and generate encoded representations of the network inputs, the encoder neural network comprising a sequence of one or more encoder subnetworks, each encoder subnetwork configured to receive a respective encoder subnetwork input for each of the input positions and to generate a respective subnetwork output for each of the input positions, and each encoder subnetwork comprising: an encoder self-attention sub-layer that is configured to receive the subnetwork input for each of the input positions and, for each particular input position in the input order: apply an attention mechanism over the encoder subnetwork inputs using one or more queries derived from the encoder subnetwork input at the particular input position.Type: GrantFiled: July 17, 2020Date of Patent: September 7, 2021Assignee: Google LLCInventors: Noam M. Shazeer, Aidan Nicholas Gomez, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Llion Owen Jones, Niki J. Parmar, Illia Polosukhin, Ashish Teku Vaswani
-
Patent number: 10956819Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. In one aspect, one of the systems includes an encoder neural network configured to receive the input sequence and generate encoded representations of the network inputs, the encoder neural network comprising a sequence of one or more encoder subnetworks, each encoder subnetwork configured to receive a respective encoder subnetwork input for each of the input positions and to generate a respective subnetwork output for each of the input positions, and each encoder subnetwork comprising: an encoder self-attention sub-layer that is configured to receive the subnetwork input for each of the input positions and, for each particular input position in the input order: apply an attention mechanism over the encoder subnetwork inputs using one or more queries derived from the encoder subnetwork input at the particular input position.Type: GrantFiled: August 7, 2020Date of Patent: March 23, 2021Assignee: Google LLCInventors: Noam M. Shazeer, Aidan Nicholas Gomez, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Llion Owen Jones, Niki J. Parmar, Illia Polosukhin, Ashish Teku Vaswani
-
Publication number: 20210064924Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output image. In one aspect, one of the methods includes generating the output image intensity value by intensity value according to a generation order of pixel—color channel pairs from the output image, comprising, for each particular generation order position in the generation order: generating a current output image representation of a current output image, processing the current output image representation using a decoder neural network to generate a probability distribution over possible intensity values for the pixel—color channel pair at the particular generation order position, wherein the decoder neural network includes one or more local masked self-attention sub-layers; and selecting an intensity value for the pixel—color channel pair at the particular generation order position using the probability distribution.Type: ApplicationFiled: November 13, 2020Publication date: March 4, 2021Inventors: Noam M. Shazeer, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Niki J. Parmar, Ashish Teku Vaswani
-
Publication number: 20210019624Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. In one aspect, one of the systems includes an encoder neural network configured to receive the input sequence and generate encoded representations of the network inputs, the encoder neural network comprising a sequence of one or more encoder subnetworks, each encoder subnetwork configured to receive a respective encoder subnetwork input for each of the input positions and to generate a respective subnetwork output for each of the input positions, and each encoder subnetwork comprising: an encoder self-attention sub-layer that is configured to receive the subnetwork input for each of the input positions and, for each particular input position in the input order: apply an attention mechanism over the encoder subnetwork inputs using one or more queries derived from the encoder subnetwork input at the particular input position.Type: ApplicationFiled: August 7, 2020Publication date: January 21, 2021Inventors: Noam M. Shazeer, Aidan Nicholas Gomez, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Llion Owen Jones, Niki J. Parmar, Illia Polosukhin, Ashish Teku Vaswani
-
Publication number: 20210019623Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. In one aspect, one of the systems includes an encoder neural network configured to receive the input sequence and generate encoded representations of the network inputs, the encoder neural network comprising a sequence of one or more encoder subnetworks, each encoder subnetwork configured to receive a respective encoder subnetwork input for each of the input positions and to generate a respective subnetwork output for each of the input positions, and each encoder subnetwork comprising: an encoder self-attention sub-layer that is configured to receive the subnetwork input for each of the input positions and, for each particular input position in the input order: apply an attention mechanism over the encoder subnetwork inputs using one or more queries derived from the encoder subnetwork input at the particular input position.Type: ApplicationFiled: August 7, 2020Publication date: January 21, 2021Inventors: Noam M. Shazeer, Aidan Nicholas Gomez, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Llion Owen Jones, Niki J. Parmar, Illia Polosukhin, Ashish Teku Vaswani
-
Publication number: 20200410344Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. One of the methods includes receiving the input sequence; processing the input sequence using a latent prediction model configured to autoregressively predict a sequence of discrete latent variables that is shorter than the output sequence and that encodes the output sequence, wherein each discrete latent variable in the sequence is selected from a discrete set of latent variables; and processing the input sequence and the predicted sequence of discrete latent variables using a parallel decoder model configured to generate the outputs in the output sequence in parallel from the input sequence and the predicted sequence of discrete latent variables.Type: ApplicationFiled: February 11, 2019Publication date: December 31, 2020Inventors: Lukasz Mieczyslaw Kaiser, Aurko Roy, Ashish Teku Vaswani, Niki Parmar, Samuel Bengio, Jakob D. Uszkoreit, Noam M. Shazeer
-
Publication number: 20200372358Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. In one aspect, one of the systems includes an encoder neural network configured to receive the input sequence and generate encoded representations of the network inputs, the encoder neural network comprising a sequence of one or more encoder subnetworks, each encoder subnetwork configured to receive a respective encoder subnetwork input for each of the input positions and to generate a respective subnetwork output for each of the input positions, and each encoder subnetwork comprising: an encoder self-attention sub-layer that is configured to receive the subnetwork input for each of the input positions and, for each particular input position in the input order: apply an attention mechanism over the encoder subnetwork inputs using one or more queries derived from the encoder subnetwork input at the particular input position.Type: ApplicationFiled: August 7, 2020Publication date: November 26, 2020Inventors: Noam M. Shazeer, Aidan Nicholas Gomez, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Llion Owen Jones, Niki J. Parmar, Illia Polosukhin, Ashish Teku Vaswani
-
Publication number: 20200372357Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for generating an output sequence from an input sequence. In one aspect, one of the systems includes an encoder neural network configured to receive the input sequence and generate encoded representations of the network inputs, the encoder neural network comprising a sequence of one or more encoder subnetworks, each encoder subnetwork configured to receive a respective encoder subnetwork input for each of the input positions and to generate a respective subnetwork output for each of the input positions, and each encoder subnetwork comprising: an encoder self-attention sub-layer that is configured to receive the subnetwork input for each of the input positions and, for each particular input position in the input order: apply an attention mechanism over the encoder subnetwork inputs using one or more queries derived from the encoder subnetwork input at the particular input position.Type: ApplicationFiled: July 17, 2020Publication date: November 26, 2020Inventors: Noam M. Shazeer, Aidan Nicholas Gomez, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Llion Owen Jones, Niki J. Parmar, Illia Polosukhin, Ashish Teku Vaswani
-
Publication number: 20200364405Abstract: Methods, systems, and apparatus, including computer programs encoded on computer storage media for training a machine learning model to perform multiple machine learning tasks from multiple machine learning domains. One system includes a machine learning model that includes multiple input modality neural networks corresponding to respective different modalities and being configured to map received data inputs of the corresponding modality to mapped data inputs from a unified representation space; an encoder neural network configured to process mapped data inputs from the unified representation space to generate respective encoder data outputs; a decoder neural network configured to process encoder data outputs to generate respective decoder data outputs from the unified representation space; and multiple output modality neural networks corresponding to respective different modalities and being configured to map decoder data outputs to data outputs of the corresponding modality.Type: ApplicationFiled: August 4, 2020Publication date: November 19, 2020Inventors: Noam M. Shazeer, Aidan Nicholas Gomez, Lukasz Mieczyslaw Kaiser, Jakob D. Uszkoreit, Llion Owen Jones, Niki J. Parmar, Ashish Teku Vaswani