Patents by Inventor Ashkan Seyedi

Ashkan Seyedi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11233577
    Abstract: Examples include systems and methods for communicating temperature variation information of a transmitter resonator to a receiver resonator in an optical communication system. Some examples provide a transceiver module that includes a transmitter resonator to transmit optical signals emitted from a light source, a photodetector coupled to the transmitter resonator to detect the optical signals transmitted by the transmitter resonator and generate a photocurrent, and a controller to receive the photocurrent from the photodetector, determine temperature variation information of the transmitter resonator from the photocurrent, and encode the temperature variation information in an outgoing data stream transmitted via the transmitter resonator.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: January 25, 2022
    Assignee: Hewlett Packard Enterprise Development LP
    Inventor: Mir Ashkan Seyedi
  • Patent number: 11201449
    Abstract: Processes and apparatuses described herein provide for an efficient cyclical fiber-optic connection between a source component and multiple destination components in a computing environment. A comb laser generates a laser signal that includes laser light of a first frequency that is red-shifted from a carrier frequency. The comb laser concurrently transmits the laser signal to four ring resonators via an optical waveguide. Three of the ring resonators are initially configured for optical resonance at a second frequency that is blue-shifted from the carrier frequency, while one of the ring resonators is initially configured for optical resonance at the first frequency. The laser signal is modulated to communicate data to a first target location associated with the ring resonator that is initially configured for optical resonance at the first frequency.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: December 14, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Terrel Morris, Di Liang, Raymond G. Beausoleil, Ashkan Seyedi
  • Publication number: 20210373241
    Abstract: Embodiments of the present disclosure provide etch-variation tolerant optical coupling components and processes for making the same. An etch-variation tolerant geometry is determined for at least one waveguide of an optical coupling component (e.g., a directional coupler). The geometry is optimized such that each fabricated instance of an optical component design with the etch-variation tolerant geometry has substantially the same coupling ratio at any etch depth between a shallow etch depth and a deep etch depth.
    Type: Application
    Filed: May 26, 2020
    Publication date: December 2, 2021
    Inventors: PENG SUN, MIR ASHKAN SEYEDI, THOMAS VAN VAERENBERGH, MARCO FIORENTINO
  • Publication number: 20210376936
    Abstract: An optical transceiver module includes a light source configured to emit light, a transmitter resonator configured to transmit light signals from the light source, a temperature sensor configured to detect temperatures of the transmitter resonator, and a controller circuit. The controller circuit is configured to obtain a first temperature variation value based on the detected temperatures, and encode the first temperature variation value via the transmitter resonator in an outgoing data stream.
    Type: Application
    Filed: June 2, 2020
    Publication date: December 2, 2021
    Inventor: MIR ASHKAN SEYEDI
  • Publication number: 20210367699
    Abstract: A fiber loop includes a plurality of processors coupled to each other and a controller coupled to each of the plurality of processors. The controller is configured to: assign to each of the plurality of processors a number of wavelengths for interconnect communications between the plurality of processors; receive, from a first processor of the plurality of processors, a request for one or more additional wavelengths; determine whether an interconnect bandwidth utilization on the fiber loop is less than a threshold; and in response to determining that the interconnect bandwidth utilization on the fiber loop is less than the threshold, reassign, to the first processor, one or more wavelengths that are assigned to a second processor of the plurality of processors.
    Type: Application
    Filed: May 22, 2020
    Publication date: November 25, 2021
    Inventors: Frank R. Dropps, Mir Ashkan Seyedi
  • Publication number: 20210368247
    Abstract: Systems and methods are provided for zero-added latency communication between nodes over an optical fabric. In various embodiments, a photonic interface system is provided that comprises a plurality of optical routing elements and optical signal sources. Each node within a cluster is assigned an intra-cluster wavelength and an inter-cluster wavelength. All the nodes in a cluster are directly connected and each node in a cluster is directly connected to one node in each of the plurality of clusters. When an optical signal from a different cluster is received at a node serving as the cluster interface, the photonics interface system allows all wavelength signals other than the node's assigned wavelength to pass through and couple those signals to an intra-cluster transmission signal. Zero latency is added in rerouting the data through an intermediate node.
    Type: Application
    Filed: May 21, 2020
    Publication date: November 25, 2021
    Inventors: MIR ASHKAN SEYEDI, LUCA RAMINI
  • Patent number: 11184103
    Abstract: A fiber loop includes a plurality of processors coupled to each other and a controller coupled to each of the plurality of processors. The controller is configured to: assign to each of the plurality of processors a number of wavelengths for interconnect communications between the plurality of processors; receive, from a first processor of the plurality of processors, a request for one or more additional wavelengths; determine whether an interconnect bandwidth utilization on the fiber loop is less than a threshold; and in response to determining that the interconnect bandwidth utilization on the fiber loop is less than the threshold, reassign, to the first processor, one or more wavelengths that are assigned to a second processor of the plurality of processors.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: November 23, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Frank R. Dropps, Mir Ashkan Seyedi
  • Publication number: 20210359760
    Abstract: An optical transceiver module includes an optical transceiver and a controller. The optical transceiver has a ring filter configured to transmit optical signals from or receive optical signals for the optical transceiver module. The controller is configured to: detect a carrier frequency at the optical transceiver; detect a data signal frequency of data at the optical transceiver; determine a bit error rate of the data; and in response to determining that the bit error rate of the data is greater than a threshold, periodically vary a central wavelength of the ring filter at a frequency at least three orders slower than the data signal frequency.
    Type: Application
    Filed: May 10, 2021
    Publication date: November 18, 2021
    Inventors: Mir Ashkan Seyedi, Terrel Morris
  • Patent number: 11177219
    Abstract: Examples include a photonic device including a photonic integrated circuit (PIC), an optical transceiver (OTRx) front-end circuitry integrated with the PIC, an electronic integrated circuit (EIC) and an interposer. The PIC and the EIC are disposed on the interposer. The EIC is electrically interconnected to the OTRx front-end circuitry in the PIC. Some examples include a method of fabricating a photonic device.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: November 16, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Jinsung Youn, Mir Ashkan Seyedi
  • Patent number: 11114409
    Abstract: Examples herein relate to optoelectronic assemblies. In particular, implementations herein relate to an optoelectronic assembly formed via a chip on wafer on substrate (CoWoS) process. The optoelectronic assembly includes a substrate, an interposer, and an electronic integrated circuit (EIC). Each of the substrate, interposer, and EIC includes opposing first and second sides. The EIC is flip-chip assembled to the first side of the interposer, and the interposer with the EIC assembled thereto is flip-chip assembled to the first side of the substrate. An overmold layer extends over the first side of the interposer and encapsulates the EIC. The overmold layer includes a cavity such that a region of the first side of the interposer is exposed. An optical component is positioned within the cavity and coupled to the first side of the interposer.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: September 7, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Mir Ashkan Seyedi, Marco Fiorentino
  • Publication number: 20210242168
    Abstract: Examples herein relate to optoelectronic assemblies. In particular, implementations herein relate to an optoelectronic assembly formed via a chip on wafer on substrate (CoWoS) process. The optoelectronic assembly includes a substrate, an interposer, and an electronic integrated circuit (EIC). Each of the substrate, interposer, and EIC includes opposing first and second sides. The EIC is flip-chip assembled to the first side of the interposer, and the interposer with the EIC assembled thereto is flip-chip assembled to the first side of the substrate. An overmold layer extends over the first side of the interposer and encapsulates the EIC. The overmold layer includes a cavity such that a region of the first side of the interposer is exposed. An optical component is positioned within the cavity and coupled to the first side of the interposer.
    Type: Application
    Filed: January 30, 2020
    Publication date: August 5, 2021
    Inventors: Mir Ashkan Seyedi, Marco Fiorentino
  • Patent number: 11036014
    Abstract: Improved systems and methods are provided to implement coherent communication. The system includes an interposer to route the components of an integrated photonic circuit. The interposer provides an interface to couple the components of the integrated photonic circuit including an optical source, modulator, coherent transmitter, coherent receiver, and interconnects therebetween. The optical source can be a grating-coupled surface-emitting laser (GCSEL). The GCSEL splits an optical signal into two symmetrical optical signals that are directed by a waveguide to a coherent transmitter and/or a coherent receiver of the integrated photonic circuit. Coherent communication is maintained and the need for a second laser in the coherent receiver is avoided through the structure of the GCSEL granting dual functional to the optical source.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: June 15, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Mir Ashkan Seyedi, Geza Kurczveil
  • Patent number: 11005566
    Abstract: An optical transceiver module includes an optical transceiver and a controller. The optical transceiver has a ring filter configured to transmit optical signals from or receive optical signals for the optical transceiver module. The controller is configured to: detect a carrier frequency at the optical transceiver; detect a data signal frequency of data at the optical transceiver; determine a bit error rate of the data; and in response to determining that the bit error rate of the data is greater than a threshold, periodically vary a central wavelength of the ring filter at a frequency at least three orders slower than the data signal frequency.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: May 11, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Mir Ashkan Seyedi, Terrel Morris
  • Patent number: 10989878
    Abstract: An example system for multi-wavelength optical signal splitting is disclosed. The example disclosed herein comprises a first splitter, a second splitter, and a modulator. The system receives a multi-wavelength optical signal and an electrical signal, wherein the multi-wavelength optical signal comprises a plurality of optical wavelengths and has a power level. The first splitter is to split the plurality of optical wavelengths into a plurality of optical wavelength groups. The second splitter is to split the multi-wavelength optical signal or the plurality of optical wavelength groups into a plurality of lower power signal groups. The modulator is to encode the electrical signal into the plurality of optical wavelength groups, the plurality of lower power signal groups, or a combination thereof.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: April 27, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Raymond G. Beausoleil, Di Liang, Marco Fiorentino, Geza Kurczveil, Mir Ashkan Seyedi, Zhihong Huang
  • Patent number: 10985841
    Abstract: Examples herein relate to wavelength division multiplexing optical interconnects. In particular, implementations herein relate to an optical interconnect that include a wavelength translator. The optical interconnect includes a first transmitter configured to modulate, combine, and transmit multi-wavelength optical signals, the modulated optical signals having a first number of optical channels, a first data rate per wavelength, and a first wavelength spacing between neighboring modulated optical signals. The optical interconnect includes a wavelength translator configured to convert the modulated optical signals such that the converted modulated optical signals have at least one or more of: a second number of optical channels different from the first number of optical channels, a second data rate per wavelength different from the first data rate per wavelength, or a second wavelength spacing different from the first wavelength spacing.
    Type: Grant
    Filed: January 29, 2020
    Date of Patent: April 20, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventor: Mir Ashkan Seyedi
  • Publication number: 20210036481
    Abstract: Processes and apparatuses described herein provide for an efficient cyclical fiber-optic connection between a source component and multiple destination components in a computing environment. A comb laser generates a laser signal that includes laser light of a first frequency that is red-shifted from a carrier frequency. The comb laser concurrently transmits the laser signal to four ring resonators via an optical waveguide. Three of the ring resonators are initially configured for optical resonance at a second frequency that is blue-shifted from the carrier frequency, while one of the ring resonators is initially configured for optical resonance at the first frequency. The laser signal is modulated to communicate data to a first target location associated with the ring resonator that is initially configured for optical resonance at the first frequency.
    Type: Application
    Filed: July 31, 2019
    Publication date: February 4, 2021
    Inventors: Terrel Morris, Di Liang, Raymond G. Beausoleil, Ashkan Seyedi
  • Patent number: 10895688
    Abstract: In example implementations, an optical connector is provided. The optical connector includes a jumper holder, a base bracket, and an optical ferrule. The jumper holder holds a plurality of ribbon fibers. The base bracket is coupled to an electrical substrate to mate with the jumper holder. The optical ferrule is coupled to an end of each one of the plurality of ribbon fibers. The optical ferrule is laterally inserted into a corresponding orthogonal socket that is coupled to a silicon interposer on the electrical substrate to optically mate the optical ferrule to the orthogonal socket.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: January 19, 2021
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Kevin B. Leigh, Paul Kessler Rosenberg, Sagi Mathai, Mir Ashkan Seyedi, Michael Renne Ty Tan, Wayne Victor Sorin, Marco Fiorentino
  • Patent number: 10845544
    Abstract: Examples herein relate to optical systems. In particular, implementations herein relate to an optical system including a bidirectional optical link such as an optical fiber. The optical system includes a resonator tuned to filter a resonant wavelength of light emitted by an optical source. The optical source may be configured to emit light having multiple wavelengths, and the resonator may be configured to receive light emitted by the optical source. The optical system may further include a photodetector to receive the resonant wavelength and measure a power of the resonant wavelength. The optical system may further include a controller coupled to the optical source. The controller may receive the measured first power of the resonant wavelength and change the state of the optical source when the measured power of the resonant wavelength is outside a per-wavelength threshold range.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: November 24, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Ashkan Seyedi, Antoine Descos
  • Patent number: 10805004
    Abstract: Examples described herein relate to reducing a magnitude of a supply voltage for a circuit element of an optical transmitter device. In some such examples, the circuit element is a driving element that is to receive a first electrical data signal and to provide a second electrical data signal to an optical element that is to provide an optical data signal. A testing element is to compare the optical data signal to the first electrical data signal to determine whether the optical transmitter device meets a performance threshold. When the device meets the performance threshold, a regulating element is to reduce a magnitude of the supply voltage of the driving element.
    Type: Grant
    Filed: April 7, 2017
    Date of Patent: October 13, 2020
    Assignee: Hewlett Packard Enterprise Development LP
    Inventors: Tsung Ching Huang, Rui Wu, Nan Qi, Mir Ashkan Seyedi, Marco Fiorentino, Raymond G. Beausoleil
  • Patent number: 10795104
    Abstract: A photonic integrated circuit package includes two arrays or sets of integrated comb laser modules that are bonded to a silicon interposer. Each comb laser of an array has a common or overlapping spectral range, with each laser in the array being optically coupled to a local optical bus. The effective spectral range of the lasers in each array are different, or distinct, as to each array. An optical coupler is disposed within the silicon interposer and is optically coupled to each of the local optical buses. An ASIC (application specific integrated circuit) is bonded to the silicon interposer and provides control and operation of the comb laser modules.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: October 6, 2020
    Assignee: Hewlett Packard Enterprise Develpment LP
    Inventors: Mir Ashkan Seyedi, Marco Fiorentino, Geza Kurczveil, Raymond G. Beausoleil