Patents by Inventor Ashley Dustin

Ashley Dustin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230332047
    Abstract: Some variations provide an anisotropic thermally conductive polymer composition comprising a plurality of polarizable, thermotropic main-chain liquid-crystal polymer molecules with crystalline domains. The liquid-crystal polymer molecules are in a nematic phase or a smectic phase, and at least 80% of the crystalline domains are aligned along a crystal axis. A method of making an anisotropic thermally conductive polymer composition comprises: synthesizing or obtaining a polymer containing polarizable domains; heating the polymer to form a polymer melt; cooling the polymer melt to form a thermotropic liquid-crystal polymer; exposing the thermotropic liquid-crystal polymer to an electrical field, thereby aligning the polarizable domains along a crystal axis; and recovering the thermotropic liquid-crystal polymer as an anisotropic thermally conductive polymer composition.
    Type: Application
    Filed: May 2, 2023
    Publication date: October 19, 2023
    Inventors: Adam GROSS, Ashley DUSTIN, Adam SORENSEN
  • Patent number: 11713370
    Abstract: The disclosed technology provides improved thermoset vitrimers. It has been discovered that by incorporating adaptable dynamic groups along the polymer backbone, along with permanent, non-dynamic crosslinking points, an improved thermoset vitrimer is generated. In some variations, a thermoset vitrimer comprises: a linear polymer backbone containing associative dynamic covalently bonded species; a crosslinked network containing non-dynamic branch points; and non-dynamic species between non-dynamic branch points and terminal ends of the linear polymer backbone.
    Type: Grant
    Filed: June 1, 2022
    Date of Patent: August 1, 2023
    Assignee: HRL Laboratories, LLC
    Inventors: Ashley Dustin, Kevin Drummey, Andrew Nowak
  • Patent number: 11674084
    Abstract: Some variations provide an anisotropic thermally conductive polymer composition comprising a plurality of polarizable, thermotropic main-chain liquid-crystal polymer molecules with crystalline domains. The liquid-crystal polymer molecules are in a nematic phase or a smectic phase, and at least 80% of the crystalline domains are aligned along a crystal axis. A method of making an anisotropic thermally conductive polymer composition comprises: synthesizing or obtaining a polymer containing polarizable domains; heating the polymer to form a polymer melt; cooling the polymer melt to form a thermotropic liquid-crystal polymer; exposing the thermotropic liquid-crystal polymer to an electrical field, thereby aligning the polarizable domains along a crystal axis; and recovering the thermotropic liquid-crystal polymer as an anisotropic thermally conductive polymer composition.
    Type: Grant
    Filed: December 5, 2021
    Date of Patent: June 13, 2023
    Assignee: HRL Laboratories, LLC
    Inventors: Adam Gross, Ashley Dustin, Adam Sorensen
  • Publication number: 20230137249
    Abstract: Some variations provide an oligomer composition comprising: polarizable first thermotropic liquid-crystal oligomer molecules (preferably urethanes or ureas) containing first triggerable reactive end groups, wherein the first triggerable reactive end groups are selected from the group consisting of hydroxyl, isocyanate, blocked isocyanate, acrylate, epoxide, amine, vinyl, ester, thiol, conjugated diene, substituted alkene, furan, maleimide, anthracene, and combinations thereof, and wherein the polarizable first thermotropic liquid-crystal oligomer molecules are characterized by a weight-average molecular weight from about 200 g/mol to about 10,000 g/mol; optionally, a plurality of polarizable second thermotropic liquid-crystal oligomer molecules containing second triggerable reactive end groups, wherein the second triggerable reactive end groups are capable of reacting with the first triggerable reactive end groups; and optionally, a reactive coupling agent capable of reacting with the first triggerable reacti
    Type: Application
    Filed: December 28, 2022
    Publication date: May 4, 2023
    Inventors: Ashley DUSTIN, Adam GROSS, Andrew NOWAK, Adam SORENSEN
  • Patent number: 11559971
    Abstract: A conductive composite includes a first layer of elastomeric polymer, a layer of electrically conductive paste on the first layer of elastomeric polymer, and a second layer of elastomeric polymer on the layer of electrically conductive paste. A reinforcement mesh is in contact with the layer of electrically conductive paste.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: January 24, 2023
    Assignee: The Boeing Company
    Inventors: Adam F. Gross, Ashley Dustin, Andrew P. Nowak, Xin Guan, Adam E. Sorensen, Richard E. Sharp
  • Publication number: 20220361486
    Abstract: Antimicrobial coatings that are transparent and not easily stained are disclosed. Some variations provide a transparent antimicrobial structure comprising: a discrete solid structural phase comprising a solid structural polymer with a glass-transition temperature from 25° C. to 300° C.; a continuous transport phase interspersed within the discrete solid structural phase, wherein the continuous transport phase comprises a solid transport material; and an antimicrobial agent contained within the continuous transport phase, wherein the antimicrobial agent is dissolved in a fluid and/or in a solid solution with the continuous transport phase. The discrete solid structural phase and the continuous transport phase are separated by an average phase-separation length selected from 100 nanometers to 500 microns. This invention resolves the trade-off between antifouling and fluorinated material content. This invention also resolves the trade-off between transport of absorbed molecules and transparency.
    Type: Application
    Filed: June 28, 2022
    Publication date: November 17, 2022
    Inventors: Adam GROSS, Andrew NOWAK, Michael VENTULETH, Stella FORS, Jason GRAETZ, Ashley DUSTIN, John VAJO
  • Patent number: 11446905
    Abstract: A conductive composite includes a first layer of elastomeric polymer, a layer of conductive fluorofluid on the first layer of elastomeric polymer, and a second layer of elastomeric polymer on the layer of conductive fluorofluid.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: September 20, 2022
    Assignee: The Boeing Company
    Inventors: Ashley Dustin, Xin Guan, Adam E. Sorensen, Andrew P. Nowak, Richard E. Sharp
  • Publication number: 20220251449
    Abstract: Some variations provide an anisotropic thermally conductive polymer composition comprising a plurality of polarizable, thermotropic main-chain liquid-crystal polymer molecules with crystalline domains. The liquid-crystal polymer molecules are in a nematic phase or a smectic phase, and at least 80% of the crystalline domains are aligned along a crystal axis. A method of making an anisotropic thermally conductive polymer composition comprises: synthesizing or obtaining a polymer containing polarizable domains; heating the polymer to form a polymer melt; cooling the polymer melt to form a thermotropic liquid-crystal polymer; exposing the thermotropic liquid-crystal polymer to an electrical field, thereby aligning the polarizable domains along a crystal axis; and recovering the thermotropic liquid-crystal polymer as an anisotropic thermally conductive polymer composition.
    Type: Application
    Filed: December 5, 2021
    Publication date: August 11, 2022
    Inventors: Adam GROSS, Ashley DUSTIN, Adam SORENSEN
  • Publication number: 20220225608
    Abstract: An antimicrobial coating is disclosed that provides fast transport rates of biocides for better effectiveness to deactivate SARS-CoV-2 and other viruses or bacteria on common surfaces. Some variations provide an antimicrobial structure comprising: a solid structural phase comprising a solid structural material; a continuous transport phase that is interspersed within the solid structural phase, wherein the continuous transport phase comprises a solid transport material; and an antimicrobial agent contained within the continuous transport phase, wherein the solid structural phase and the continuous transport phase are separated by an average phase-separation length from about 100 nanometers to about 500 microns. The antimicrobial structure is capable of destroying at least 99.99% of bacteria and/or viruses in 10 minutes of contact. Many options are disclosed for suitable materials to form the solid structural phase, the continuous transport phase, and the antimicrobial agent.
    Type: Application
    Filed: April 5, 2022
    Publication date: July 21, 2022
    Inventors: Adam GROSS, Andrew NOWAK, Ashley DUSTIN, Jason GRAETZ, John VAJO
  • Patent number: 11369109
    Abstract: An antimicrobial coating is disclosed that provides fast transport rates of biocides for better effectiveness to deactivate SARS-CoV-2 and other viruses or bacteria on common surfaces. Some variations provide an antimicrobial structure comprising: a solid structural phase comprising a solid structural material; a continuous transport phase that is interspersed within the solid structural phase, wherein the continuous transport phase comprises a solid transport material; and an antimicrobial agent contained within the continuous transport phase, wherein the solid structural phase and the continuous transport phase are separated by an average phase-separation length from about 100 nanometers to about 500 microns. The antimicrobial structure is capable of destroying at least 99.99 wt % of bacteria and/or viruses in 10 minutes of contact. Many options are disclosed for suitable materials to form the solid structural phase, the continuous transport phase, and the antimicrobial agent.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: June 28, 2022
    Assignee: HRL Laboratories, LLC
    Inventors: Adam Gross, Andrew Nowak, Ashley Dustin, Jason Graetz, John Vajo
  • Publication number: 20210386059
    Abstract: An antimicrobial coating is disclosed that provides fast transport rates of biocides for better effectiveness to deactivate SARS-CoV-2 and other viruses or bacteria on common surfaces. Some variations provide an antimicrobial structure comprising: a solid structural phase comprising a solid structural material; a continuous transport phase that is interspersed within the solid structural phase, wherein the continuous transport phase comprises a solid transport material; and an antimicrobial agent contained within the continuous transport phase, wherein the solid structural phase and the continuous transport phase are separated by an average phase-separation length from about 100 nanometers to about 500 microns. The antimicrobial structure is capable of destroying at least 99.99 wt % of bacteria and/or viruses in 10 minutes of contact. Many options are disclosed for suitable materials to form the solid structural phase, the continuous transport phase, and the antimicrobial agent.
    Type: Application
    Filed: November 6, 2020
    Publication date: December 16, 2021
    Inventors: Adam GROSS, Andrew NOWAK, Ashley DUSTIN, Jason GRAETZ, John VAJO
  • Publication number: 20210347153
    Abstract: A conductive composite includes a first layer of elastomeric polymer, a layer of conductive fluorofluid on the first layer of elastomeric polymer, and a second layer of elastomeric polymer on the layer of conductive fluorofluid.
    Type: Application
    Filed: May 6, 2020
    Publication date: November 11, 2021
    Applicant: The Boeing Company
    Inventors: Ashley Dustin, Xin Guan, Adam E. Sorensen, Andrew P. Nowak, Richard E. Sharp
  • Publication number: 20210347152
    Abstract: A conductive composite includes a first layer of elastomeric polymer, a layer of electrically conductive paste on the first layer of elastomeric polymer, and a second layer of elastomeric polymer on the layer of electrically conductive paste. A reinforcement mesh is in contact with the layer of electrically conductive paste.
    Type: Application
    Filed: May 6, 2020
    Publication date: November 11, 2021
    Applicant: The Boeing Company
    Inventors: Adam F. Gross, Ashley Dustin, Andrew P. Nowak, Xin Guan, Adam E. Sorensen, Richard E. Sharp
  • Patent number: 10932399
    Abstract: Examples include a method of forming an electromagnetic shielding material, the method including: applying a magnetic field to a precursor material that includes first ferromagnetic particles embedded within a first portion of a matrix material and second ferromagnetic particles embedded within a second portion of the matrix material, thereby causing the first ferromagnetic particles and the second ferromagnetic particles to move such that longitudinal axes of the first ferromagnetic particles and the second ferromagnetic particles become more aligned with the magnetic field; thereafter forcing the first portion of the matrix material through a filter, thereby moving the first ferromagnetic particles from the first portion of the matrix material into the second portion of the matrix material; and curing the second portion of the matrix material to form the electromagnetic shielding material.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: February 23, 2021
    Assignee: THE BOEING COMPANY
    Inventors: Andrew P. Nowak, Adam F. Gross, April R. Rodriguez, Russell Mott, Richard E. Sharp, Ashley Dustin