Patents by Inventor Ashley M. Okada

Ashley M. Okada has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200166400
    Abstract: Mass flow verification systems and apparatus may verify mass flow rates of mass flow controllers (MFCs) based on choked flow principles. These systems and apparatus may include a plurality of differently-sized flow restrictors coupled in parallel. A wide range of flow rates may be verified via selection of a flow path through one of the flow restrictors based on an MFC's set point. Mass flow rates may be determined via pressure and temperature measurements upstream of the flow restrictors under choked flow conditions. Methods of verifying a mass flow rate based on choked flow principles are also provided, as are other aspects.
    Type: Application
    Filed: January 30, 2020
    Publication date: May 28, 2020
    Inventors: Kevin M. Brashear, Zhiyuan Ye, Justin Hough, Jaidev Rajaram, Marcel E. Josephson, Ashley M. Okada
  • Publication number: 20200051840
    Abstract: In embodiments, a process gas supply provides a carrier gas and one or more process gases to a distribution manifold. A back pressure sensor senses back pressure in the distribution manifold and provides a signal to the first controller based at least in part on the back pressure. The first controller determines a back pressure set point based at least in part on the signal. One or more mass flow controllers control the flow of the gas mixture comprising the carrier gas and the one or more process gases into one or more zones of the process chamber. An upstream pressure controller fluidly and operatively connected to the distribution manifold controls flow of the carrier gas based on the back pressure set point.
    Type: Application
    Filed: October 21, 2019
    Publication date: February 13, 2020
    Inventors: Kevin Brashear, Ashley M. Okada, Dennis L. Demars, Zhiyuan Ye, Jaidev Rajaram, Marcel E. Josephson
  • Publication number: 20190332129
    Abstract: Gas distribution apparatus to provide uniform flows of gases from a single source to multiple processing chambers are described. A regulator is positioned at an upstream end of a shared volume having a plurality of downstream ends. A flow controller is positioned at each downstream end of the shared volume, the flow controller comprising an orifice and a fast pulsing valve. Methods of using the gas distribution apparatus and calibrating the flow controllers are also described.
    Type: Application
    Filed: April 27, 2019
    Publication date: October 31, 2019
    Inventors: Michael Rice, Joseph AuBuchon, Sanjeev Baluja, Ashley M. Okada, Alexander Fernandez, Ming Xu, Marcel E. Josephson, Sushant Suresh Koshti, Kenneth Le, Kevin M. Brashear
  • Patent number: 10453721
    Abstract: Methods and gas flow control assemblies configured to deliver gas to process chamber zones in desired flow ratios. In some embodiments, assemblies include one or more MFCs and a back pressure controller (BPC). Assemblies includes a controller, a process gas supply, a distribution manifold, a pressure sensor coupled to the distribution manifold and configured to sense back pressure of the distribution manifold, a process chamber, a one or more mass flow controllers connected between the distribution manifold and process chamber to control gas flow there between, and a back pressure controller provided in fluid parallel relationship to the one or more mass flow controllers, wherein precise flow ratio control is achieved. Alternate embodiments include an upstream pressure controller configured to control flow of carrier gas to control back pressure. Further methods and assemblies for controlling zonal gas flow ratios are described, as are other aspects.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: October 22, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Kevin Brashear, Ashley M. Okada, Dennis L. Demars, Zhiyuan Ye, Jaidev Rajaram, Marcel E. Josephson
  • Publication number: 20190206707
    Abstract: Methods and gas flow control assemblies configured to deliver gas to process chamber zones in desired flow ratios. In some embodiments, assemblies include one or more MFCs and a back pressure controller (BPC). Assemblies includes a controller, a process gas supply, a distribution manifold, a pressure sensor coupled to the distribution manifold and configured to sense back pressure of the distribution manifold, a process chamber, a one or more mass flow controllers connected between the distribution manifold and process chamber to control gas flow there between, and a back pressure controller provided in fluid parallel relationship to the one or more mass flow controllers, wherein precise flow ratio control is achieved. Alternate embodiments include an upstream pressure controller configured to control flow of carrier gas to control back pressure. Further methods and assemblies for controlling zonal gas flow ratios are described, as are other aspects.
    Type: Application
    Filed: March 5, 2019
    Publication date: July 4, 2019
    Inventors: Kevin Brashear, Ashley M. Okada, Dennis L. Demars, Zhiyuan Ye, Jaidev Rajaram, Marcel E. Josephson
  • Patent number: 10269600
    Abstract: Methods and gas flow control assemblies configured to deliver gas to process chamber zones in desired flow ratios. In some embodiments, assemblies include one or more MFCs and a back pressure controller (BPC). Assemblies includes a controller, a process gas supply, a distribution manifold, a pressure sensor coupled to the distribution manifold and configured to sense back pressure of the distribution manifold, a process chamber, a one or more mass flow controllers connected between the distribution manifold and process chamber to control gas flow there between, and a back pressure controller provided in fluid parallel relationship to the one or more mass flow controllers, wherein precise flow ratio control is achieved. Alternate embodiment include an upstream pressure controller configured to control flow of carrier gas to control back pressure. Further methods and assemblies for controlling zonal gas flow ratios are described, as are other aspects.
    Type: Grant
    Filed: March 15, 2016
    Date of Patent: April 23, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Kevin Brashear, Ashley M. Okada, Dennis L. Demars, Zhiyuan Ye, Jaidev Rajaram, Marcel E. Josephson
  • Publication number: 20170370763
    Abstract: Mass flow verification systems and apparatus may verify mass flow rates of mass flow controllers (MFCs) based on choked flow principles. These systems and apparatus may include a plurality of differently-sized flow restrictors coupled in parallel. A wide range of flow rates may be verified via selection of a flow path through one of the flow restrictors based on an MFC's set point. Mass flow rates may be determined via pressure and temperature measurements upstream of the flow restrictors under choked flow conditions. Methods of verifying a mass flow rate based on choked flow principles are also provided, as are other aspects.
    Type: Application
    Filed: June 27, 2016
    Publication date: December 28, 2017
    Inventors: Kevin M. Brashear, Zhiyuan Ye, Justin Hough, Jaidev Rajaram, Marcel E. Josephson, Ashley M. Okada
  • Publication number: 20170271183
    Abstract: Methods and gas flow control assemblies configured to deliver gas to process chamber zones in desired flow ratios. In some embodiments, assemblies include one or more MFCs and a back pressure controller (BPC). Assemblies includes a controller, a process gas supply, a distribution manifold, pressure sensor coupled to the distribution manifold and configured to sense back pressure of the distribution manifold, a process chamber, a one or more mass flow controllers connected between the distribution manifold and process chamber to control gas flow there between, and a back pressure controller provided in fluid parallel relationship to the one or more mass flow controllers, wherein precise flow ratio control is achieved. Alternate embodiment include an upstream pressure controller configured to control flow of carrier gas to control back pressure. Further methods and assemblies for controlling zonal gas flow ratios are described, as are other aspects.
    Type: Application
    Filed: March 15, 2016
    Publication date: September 21, 2017
    Inventors: Kevin Brashear, Ashley M. Okada, Dennis L. Demars, Zhiyuan Ye, Jaidev Rajaram, Marcel E. Josephson
  • Publication number: 20170271184
    Abstract: Methods and gas flow control assemblies configured to deliver gas to process chamber zones in desired flow ratios. In some embodiments, assemblies include one or more MFCs and a back pressure controller (BPC). Assemblies includes a controller, a process gas supply, a distribution manifold, a pressure sensor coupled to the distribution manifold and configured to sense back pressure of the distribution manifold, a process chamber, a one or more mass flow controllers connected between the distribution manifold and process chamber to control gas flow there between, and a back pressure controller provided in fluid parallel relationship to the one or more mass flow controllers, wherein precise flow ratio control is achieved. Alternate embodiments include an upstream pressure controller configured to control flow of carrier gas to control back pressure. Further methods and assemblies for controlling zonal gas flow ratios are described, as are other aspects.
    Type: Application
    Filed: March 15, 2016
    Publication date: September 21, 2017
    Inventors: Kevin Brashear, Ashley M. Okada, Dennis L. Demars, Zhiyuan Ye, Jaidev Rajaram, Marcel E. Josephson