Patents by Inventor Ashley Tuan

Ashley Tuan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170038604
    Abstract: Ophthalmic lenses for correcting refractive error of an eye are disclosed. Ophthalmic lenses include a deformable inner portion and a deformable peripheral portion. When disposed over the optical region of an eye, the inner portion is configured so that engagement of the posterior surface against the eye deforms the posterior surface so that the posterior surface has a shape diverging form the refractive shape of the epithelium when viewing with the eye through the ophthalmic lens. The rigidity of the inner portion is greater than the rigidity of the peripheral portion and the ophthalmic lenses are configured to allow movement relative to the eye upon blinking of the eye and to be substantially centered on the optical region of the cornea following the blinking of the eye. Methods of correcting refractive errors of an eye such as astigmatism or spherical aberration using the ophthalmic lenses are also disclosed.
    Type: Application
    Filed: July 13, 2016
    Publication date: February 9, 2017
    Inventors: Eugene de Juan, JR., Cary J. Reich, Yair Alster, Matt Clarke, Kuangmon Ashley Tuan, Brian Levy, Raymond Lum, Jose D. Alejandro
  • Publication number: 20170023800
    Abstract: A conformable covering comprises an outer portion with rigidity to resist movement on the cornea and an inner portion to contact the cornea and provide an environment for epithelial regeneration. The inner portion of the covering can be configured in many ways so as to conform at least partially to an ablated stromal surface so as to correct vision. The conformable inner portion may have at least some rigidity so as to smooth the epithelium such that the epithelium regenerates rapidly and is guided with the covering so as to form a smooth layer for vision. The inner portion may comprise an amount of rigidity within a range from about 1×10?4 Pa*m3 to about 5×10?4 Pa*m3 so as to deflect and conform at least partially to the ablated cornea and smooth an inner portion of the ablation with an amount of pressure when deflected.
    Type: Application
    Filed: October 10, 2016
    Publication date: January 26, 2017
    Inventors: Eugene de Juan, JR., Cary J. Reich, Yair Alster, K. Angela Macfarlane, Doug Rimer, Douglas Sutton, Dean Carson, Enrique Barragan, Matt Clarke, Ashley Tuan, Brian Levy
  • Publication number: 20160370603
    Abstract: Ophthalmic lenses for correcting refractive error of an eye are disclosed. Ophthalmic lenses include an inner optic portion configured to be disposed over the optical region of the cornea and having a central portion disposed between an anterior portion and a posterior portion. The inner optic portions configured to at least partially diverge from the shape of the cornea to provide at least one lenticular volume between a posterior surface of the inner optic portion and the cornea. The central portion may be characterized by a thickness from 50 ?m to 900 ?m and a modulus form 20 MPa to 1500 MPa.
    Type: Application
    Filed: August 31, 2016
    Publication date: December 22, 2016
    Inventors: Eugene de Juan, JR., Cary J. Reich, Yair Alster, Matt Clarke, Kuangmon Ashley Tuan, Brian Levy, Raymond Lum, Jose D. Alejandro
  • Patent number: 9498385
    Abstract: A conformable covering comprises an outer portion with rigidity to resist movement on the cornea and an inner portion to contact the cornea and provide an environment for epithelial regeneration. The inner portion of the covering can be configured in many ways so as to conform at least partially to an ablated stromal surface so as to correct vision. The conformable inner portion may have at least some rigidity so as to smooth the epithelium such that the epithelium regenerates rapidly and is guided with the covering so as to form a smooth layer for vision. The inner portion may comprise an amount of rigidity within a range from about 1×10?4 Pa*m3 to about 5×10?4 Pa*m3 so as to deflect and conform at least partially to the ablated cornea and smooth an inner portion of the ablation with an amount of pressure when deflected.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: November 22, 2016
    Assignee: NexisVision, Inc.
    Inventors: Eugene de Juan, Jr., Cary J. Reich, Yair Alster, K. Angela MacFarlane, Doug Rimer, Douglas Sutton, Dean Carson, Enrique Barragan, Matt Clarke, Ashley Tuan, Brian Levy
  • Publication number: 20160334640
    Abstract: Bimodulus multifocal ophthalmic lenses for correcting presbyopia include an inner optic portion characterized by a rigidity greater than a rigidity of an outer peripheral portion. When applied to an eye, the ophthalmic lenses are configured to provide one or more lenticular volumes between the posterior surface of the lens and the cornea. The ophthalmic lenses are further characterized by features on a surface of the lens for improving multifocal visual acuity. The disclosure further relates to methods of correcting presbyopia using the ophthalmic lenses.
    Type: Application
    Filed: July 28, 2016
    Publication date: November 17, 2016
    Inventors: Eugene de Juan, JR., Cary J. Reich, Matt Clarke, Kuangmon Ashley Tuan, Raymond Lum, Jose D. Alejandro
  • Patent number: 9465233
    Abstract: Ophthalmic lenses for correcting refractive error of an eye are disclosed. Ophthalmic lenses include an inner optic portion configured to be disposed over the optical region of the cornea and having a central portion disposed between an anterior portion and a posterior portion. The inner optic portion is configured to at least partially diverge from the shape of the cornea to provide at least one lenticular volume between a posterior surface of the inner optic portion and the cornea. The central portion may be characterized by a thickness from 50 ?m to 900 ?m and a modulus form 20 MPa to 1500 MPa.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: October 11, 2016
    Assignee: NexisVision, Inc.
    Inventors: Eugene de Juan, Jr., Cary J. Reich, Yair Alster, Matt Clarke, Kuangmon Ashley Tuan, Brian Levy, Raymond Lum, Jose D. Alejandro
  • Patent number: 9423632
    Abstract: Ophthalmic lenses for correcting refractive error of an eye are disclosed. Ophthalmic lenses include a deformable inner portion and a deformable peripheral portion. When disposed over the optical region of an eye, the inner portion is configured so that engagement of the posterior surface against the eye deforms the posterior surface so that the posterior surface has a shape diverging form the refractive shape of the epithelium when viewing with the eye through the ophthalmic lens. The rigidity of the inner portion is greater than the rigidity of the peripheral portion and the ophthalmic lenses are configured to allow movement relative to the eye upon blinking of the eye and to be substantially centered on the optical region of the cornea following the blinking of the eye. Methods of correcting refractive errors of an eye such as astigmatism or spherical aberration using the ophthalmic lenses are also disclosed.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: August 23, 2016
    Assignee: NexisVision, Inc.
    Inventors: Eugene de Juan, Jr., Cary J. Reich, Yair Alster, Matt Clarke, Kuangmon Ashley Tuan, Brian Levy, Raymond Lum, Jose D. Alejandro
  • Publication number: 20160223835
    Abstract: Ophthalmic lenses for correcting refractive error of an eye are disclosed. Ophthalmic lenses include an inner optic portion having a scaffold between an anterior portion and a posterior portion. The scaffold is characterized by a substantially uniform thickness formed from a material characterized by a modulus that his higher than the modulus of the peripheral portion. Openings within the scaffold are filled with a low modulus material. When applied to an eye, the lenses are configured to provide one or more lenticular volumes between the posterior surface of the lens and the cornea. The disclosure further relates to methods of correcting refractive errors of an eye such as astigmatism or spherical aberration using the ophthalmic lenses.
    Type: Application
    Filed: April 12, 2016
    Publication date: August 4, 2016
    Inventors: Eugene de Juan, JR., Cary J. Reich, Matt Clarke, Kuangmon Ashley Tuan, Raymond Lum, Jose D. Alejandro
  • Patent number: 9395558
    Abstract: Methods and apparatus can fit coverings to treat eyes. The covering can be identified so as to provide improved flow of tear liquid under the covering. The covering can be identified based on an inner corneal curvature and an outer corneal curvature and one or more of a limbus sag height or a conjunctival sag height. The covering may form a chamber when placed on the eye to pump tear liquid under at least a portion of the covering. The covering may comprise an outer portion with rigidity to resist movement on the cornea and an inner portion to contact the cornea and provide an environment for epithelial regeneration. The covering may comprise a material having high oxygen permeability, for example silicone, with a wettable coating disposed on at least an upper surface of the coating.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: July 19, 2016
    Assignee: NexisVision, Inc.
    Inventors: Eugene de Juan, Jr., Yair Alster, Cary J. Reich, Ashley Tuan, Angela K MacFarlane, Matt Clarke, Brian Levy
  • Publication number: 20160170233
    Abstract: A conformable covering comprises an outer portion with rigidity to resist movement on the cornea and an inner portion to contact the cornea and provide an environment for epithelial regeneration. The inner portion of the covering can be configured in many ways so as to conform at least partially to an ablated stromal surface so as to correct vision. The conformable inner portion may have at least some rigidity so as to smooth the epithelium such that the epithelium regenerates rapidly and is guided with the covering so as to form a smooth layer for vision. The inner portion may comprise an amount of rigidity within a range from about 1×10-4 Pa*m3 to about 5×10-4 Pa*m3 so as to deflect and conform at least partially to the ablated cornea and smooth an inner portion of the ablation with an amount of pressure when deflected.
    Type: Application
    Filed: December 11, 2015
    Publication date: June 16, 2016
    Inventors: EUGENE DE JUAN, JR., CARY J. REICH, YAIR ALSTER, K. ANGELA MACFARLANE, DOUG RIMER, DOUGLAS SUTTON, DEAN CARSON, ENRIQUE BARRAGAN, MATT CLARKE, ASHLEY TUAN, BRIAN LEVY
  • Patent number: 9341864
    Abstract: Ophthalmic lenses for correcting refractive error of an eye are disclosed. Ophthalmic lenses include an inner optic portion having a scaffold between an anterior portion and a posterior portion. The scaffold is characterized by a substantially uniform thickness formed from a material characterized by a modulus that his higher than the modulus of the peripheral portion. Openings within the scaffold are filled with a low modulus material. When applied to an eye, the lenses are configured to provide one or more lenticular volumes between the posterior surface of the lens and the cornea. The disclosure further relates to methods of correcting refractive errors of an eye such as astigmatism or spherical aberration using the ophthalmic lenses.
    Type: Grant
    Filed: November 12, 2014
    Date of Patent: May 17, 2016
    Assignee: NexisVision, Inc.
    Inventors: Eugene de Juan, Jr., Cary J. Reich, Matt Clarke, Kuangmon Ashley Tuan, Raymond Lum, Jose D. Alejandro
  • Publication number: 20160067109
    Abstract: A conformable covering comprises an outer portion with rigidity to resist movement on the cornea and an inner portion to contact the cornea and provide an environment for epithelial regeneration. The inner portion of the covering can be configured in many ways so as to conform at least partially to an ablated stromal surface so as to correct vision. The conformable inner portion may have at least some rigidity so as to smooth the epithelium such that the epithelium regenerates rapidly and is guided with the covering so as to form a smooth layer for vision. The inner portion may comprise an amount of rigidity within a range from about 1×10-4 Pa*m3 to about 5×10-4 Pa*m3 so as to deflect and conform at least partially to the ablated cornea and smooth an inner portion of the ablation with an amount of pressure when deflected.
    Type: Application
    Filed: July 8, 2015
    Publication date: March 10, 2016
    Inventors: EUGENE DE JUAN, JR., CARY J. REICH, YAIR ALSTER, K. ANGELA MACFARLANE, DOUG RIMER, DOUGLAS SUTTON, DEAN CARSON, ENRIQUE BARRAGAN, MATT CLARKE, ASHLEY TUAN, BRIAN LEVY
  • Patent number: 9241837
    Abstract: A conformable covering comprises an outer portion with rigidity to resist movement on the cornea and an inner portion to contact the cornea and provide an environment for epithelial regeneration. The inner portion of the covering can be configured in many ways so as to conform at least partially to an ablated stromal surface so as to correct vision. The conformable inner portion may have at least some rigidity so as to smooth the epithelium such that the epithelium regenerates rapidly and is guided with the covering so as to form a smooth layer for vision. The inner portion may comprise an amount of rigidity within a range from about 1×10?4 Pa*m3 to about 5×10?4 Pa*m3 so as to deflect and conform at least partially to the ablated cornea and smooth an inner portion of the ablation with an amount of pressure when deflected.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: January 26, 2016
    Assignee: NexisVision, Inc.
    Inventors: Eugene de Juan, Cary J. Reich, Yair Alster, K. Angela Macfarlane, Doug Rimer, Douglas Sutton, Dean Carson, Enrique Barragan, Matt Clarke, Ashley Tuan, Brian Levy
  • Patent number: 9107773
    Abstract: A conformable covering comprises an outer portion with rigidity to resist movement on the cornea and an inner portion to contact the cornea and provide an environment for epithelial regeneration. The inner portion of the covering can be configured in many ways so as to conform at least partially to an ablated stromal surface so as to correct vision. The conformable inner portion may have at least some rigidity so as to smooth the epithelium such that the epithelium regenerates rapidly and is guided with the covering so as to form a smooth layer for vision. The inner portion may comprise an amount of rigidity within a range from about 1×10-4 Pa*m3 to about 5×10-4 Pa*m3 so as to deflect and conform at least partially to the ablated cornea and smooth an inner portion of the ablation with an amount of pressure when deflected.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: August 18, 2015
    Assignee: NexisVision, Inc.
    Inventors: Eugene de Juan, Jr., Cary J. Reich, Yair Alster, K. Angela Macfarlane, Doug Rimer, Douglas Sutton, Dean Carson, Enrique Barragan, Matt Clarke, Ashley Tuan, Brian Levy
  • Publication number: 20150138500
    Abstract: Ophthalmic lenses for correcting refractive error of an eye are disclosed. Ophthalmic lenses include an inner optic portion having a scaffold between an anterior portion and a posterior portion. The scaffold is characterized by a substantially uniform thickness formed from a material characterized by a modulus that his higher than the modulus of the peripheral portion. Openings within the scaffold are filled with a low modulus material. When applied to an eye, the lenses are configured to provide one or more lenticular volumes between the posterior surface of the lens and the cornea. The disclosure further relates to methods of correcting refractive errors of an eye such as astigmatism or spherical aberration using the ophthalmic lenses.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 21, 2015
    Inventors: Eugene de Juan, JR., Cary J. Reich, Matt Clarke, Kuangmon Ashley Tuan, Raymond Lum, Jose D. Alejandro
  • Publication number: 20150077701
    Abstract: Ophthalmic lenses for correcting refractive error of an eye are disclosed. Ophthalmic lenses include a deformable inner portion and a deformable peripheral portion. When disposed over the optical region of an eye, the inner portion is configured so that engagement of the posterior surface against the eye deforms the posterior surface so that the posterior surface has a shape diverging form the refractive shape of the epithelium when viewing with the eye through the ophthalmic lens. The rigidity of the inner portion is greater than the rigidity of the peripheral portion and the ophthalmic lenses are configured to allow movement relative to the eye upon blinking of the eye and to be substantially centered on the optical region of the cornea following the blinking of the eye. Methods of correcting refractive errors of an eye such as astigmatism or spherical aberration using the ophthalmic lenses are also disclosed.
    Type: Application
    Filed: November 4, 2014
    Publication date: March 19, 2015
    Inventors: Eugene de Juan, JR., Cary J. Reich, Yair Alster, Matt Clarke, Kuangmon Ashley Tuan, Brian Levy, Raymond Lum, Jose D. Alejandro
  • Publication number: 20150055081
    Abstract: Ophthalmic lenses for correcting refractive error of an eye are disclosed. Ophthalmic lenses include an inner optic portion configured to be disposed over the optical region of the cornea and having a central portion disposed between an anterior portion and a posterior portion. The inner optic portion is configured to at least partially diverge from the shape of the cornea to provide at least one lenticular volume between a posterior surface of the inner optic portion and the cornea. The central portion may be characterized by a thickness from 50 ?m to 900 ?m and a modulus form 20 MPa to 1500 MPa.
    Type: Application
    Filed: November 4, 2014
    Publication date: February 26, 2015
    Inventors: Eugene de Juan, JR., Cary J. Reich, Yair Alster, Matt Clarke, Kuangmon Ashley Tuan, Brian Levy, Raymond Lum, Jose D. Alejandro
  • Patent number: 8926096
    Abstract: A conformable covering comprises an outer portion with rigidity to resist movement on the cornea and an inner portion to contact the cornea and provide an environment for epithelial regeneration. The inner portion of the covering can be configured in many ways so as to conform at least partially to an ablated stromal surface so as to correct vision. The conformable inner portion may have at least some rigidity so as to smooth the epithelium such that the epithelium regenerates rapidly and is guided with the covering so as to form a smooth layer for vision. The inner portion may comprise an amount of rigidity within a range from about 1×10-4 Pa*m3 to about 5×10-4 Pa*m3 so as to deflect and conform at least partially to the ablated cornea and smooth an inner portion of the ablation with an amount of pressure when deflected.
    Type: Grant
    Filed: May 14, 2013
    Date of Patent: January 6, 2015
    Assignee: NexisVision, Inc.
    Inventors: Eugene de Juan, Jr., Cary J. Reich, Yair Alster, K. Angela MacFarlane, Doug Rimer, Douglas Sutton, Dean Carson, Enrique Barragan, Matt Clarke, Ashley Tuan, Brian Levy
  • Publication number: 20140362338
    Abstract: An eye covering such as a contact lens may comprise one or more structures to pump tear liquid under the covering such that the covering can remain in the eye and correct vision for an extended amount of time. In many embodiments, the covering comprises a material having fenestrations to draw tear liquid under the covering and an outer portion shaped to contact the conjunctiva over the sclera, such that when the eye closes pressure of one or more eyelids urges tear liquid through one or more fenestrations and under the outer portion shaped to contact the conjunctiva. When the eye blinks, the pressure of the one or more eyelids can urge the covering toward the cornea such that tear liquid can pass through the fenestrations.
    Type: Application
    Filed: August 25, 2014
    Publication date: December 11, 2014
    Inventors: Eugene de Juan, JR., Cary J. Reich, Yair Alster, Matt Clarke, Kuangmon Ashley Tuan, Brian Levy
  • Patent number: 8894202
    Abstract: Multifocal contact lenses and methods and uses are described. The multifocal contact lenses include an optic zone. The optic zone has an aspheric power profile that provides a near vision refractive power and a distance vision refractive power, and provides an Add power that corresponds to the difference between the near vision refractive power and the distance vision refractive power. The multifocal contact lenses can improve binocular vision of presbyopic subjects by being prescribed such that the non-dominant eye contact lens is over-corrected for distance vision, and both multifocal contact lenses are under-corrected for the Add power requirement of the subject. Batches and sets of multifocal contact lenses are also described.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: November 25, 2014
    Assignee: CooperVision International Holding Company, LP
    Inventors: Arthur Back, Kuang-mon Ashley Tuan