Patents by Inventor Ashok Krishnamoorthy

Ashok Krishnamoorthy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9217836
    Abstract: A system includes optical modules. Each module includes a different base and one or more module waveguides on the base. Module waveguides from different modules are aligned such that the aligned module waveguides exchange light signals. At least a portion of one of the aligned module waveguides is between the base of one of the modules and the base of another module. First electronics operate a transmitter on a first one of the optical modules so as to generate one of the light signals. Second electronics operate a receiver on a second one of the modules such that the electronics generate an electrical signal in response to the receiver receiving one of the light signals.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: December 22, 2015
    Assignee: Kotura, Inc.
    Inventors: Mehdi Asghari, Roshanak Shafiiha, Daniel C. Lee, Dazeng Feng, Xuezhe Zheng, Ashok Krishnamoorthy, Hiren Thacker, John E. Cunningham
  • Patent number: 9052464
    Abstract: An optical device has a waveguide immobilized on a base. A lens is defined by the base. A reflecting side reflects a light signal that travels on an optical pathway that extends through the lens and into the waveguide. The reflecting side is positioned to reflect the light signal as the light signal travels along a portion of the optical pathway between the lens and the waveguide. An optical insulator that confines the light signal within the waveguide. The portion of the optical pathway between the lens and the waveguide extends through the optical insulator such that the light signal is transmitted through the optical insulator.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: June 9, 2015
    Assignees: Kotura, Inc., Oracle International Corporation
    Inventors: Shirong Liao, Mehdi Asghari, Dazeng Feng, Roshanak Shafiiha, Daniel C. Lee, Wei Qian, Xuezhe Zheng, Ashok Krishnamoorthy, John E. Cunningham, Kannan Raj
  • Patent number: 8824496
    Abstract: A method for arbitration in an arbitration domain. The method includes: receiving, by each node of a plurality of nodes in the arbitration domain, an arbitration request from each sending node of the plurality of nodes in the arbitration domain, where the plurality of nodes in the arbitration domain each use a shared data channel to send data to a set of receiving nodes; assigning, by each node in the arbitration domain, consecutive time slots to each sending node based on a plurality of priorities assigned to the plurality of nodes in the arbitration domain; for each time slot: sending, from the arbitration domain, a switch request to a receiving node designated by the sending node, where the receiving node is in the set of receiving nodes; and sending, by the sending node, data to the receiving node via the shared data channel during the time slot.
    Type: Grant
    Filed: October 30, 2009
    Date of Patent: September 2, 2014
    Assignee: Oracle America, Inc.
    Inventors: Pranay Koka, Michael Oliver McCracken, Herbert Dewitt Schwetman, Jr., Xuezhe Zheng, Ashok Krishnamoorthy
  • Publication number: 20140225273
    Abstract: A chip package is described. This chip package includes a substrate having a side at an angle relative to the top and bottom surfaces of the substrate that is between that of a direction parallel to the top and bottom surfaces and that of a direction perpendicular to the top and bottom surfaces (i.e., between 0° and 90°). This side may be configured to couple to a stack of semiconductor dies in which the semiconductor dies are offset from each other in a direction parallel to the top and bottom surfaces so that one side of the stack defines a stepped terrace. For example, the side may include electrical pads. These electrical pads may be coupled to electrical pads on the top surface by through-substrate vias (TSVs) in the substrate. Moreover, the electrical pads on the top surface may be configured to couple to an integrated circuit.
    Type: Application
    Filed: February 11, 2013
    Publication date: August 14, 2014
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Hiren D. Thacker, John E. Cunningham, Ashok Krishnamoorthy
  • Publication number: 20140133864
    Abstract: A system includes optical modules. Each module includes a different base and one or more module waveguides on the base. Module waveguides from different modules are aligned such that the aligned module waveguides exchange light signals. At least a portion of one of the aligned module waveguides is between the base of one of the modules and the base of another module. First electronics operate a transmitter on a first one of the optical modules so as to generate one of the light signals. Second electronics operate a receiver on a second one of the modules such that the electronics generate an electrical signal in response to the receiver receiving one of the light signals.
    Type: Application
    Filed: October 23, 2012
    Publication date: May 15, 2014
    Inventors: Mehdi Asghari, Roshanak Shafiiha, Daniel C. Lee, Dazeng Feng, Xuezhe Zheng, Ashok Krishnamoorthy, Hiren Thacker, John E. Cunningham
  • Patent number: 8473659
    Abstract: A method for arbitration including selecting, for an arbitration interval corresponding to a timeslot, a sending node from a plurality of sending nodes in an arbitration domain, where the plurality of sending nodes include a plurality of source counters; broadcasting, by the sending node and in response to selecting the sending node, a transmitter arbitration request for the timeslot during the arbitration interval; receiving, by the plurality of sending nodes, the transmitter arbitration request; incrementing the plurality of source counters in response to receiving the transmitter arbitration request; and sending, during the timeslot, a data item from the sending node to a receiving node via an optical data channel.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: June 25, 2013
    Assignee: Oracle America, Inc.
    Inventors: Pranay Koka, Michael Oliver McCracken, Herbert Dewitt Schwetman, Jr., Xuezhe Zheng, Ashok Krishnamoorthy
  • Patent number: 8406623
    Abstract: A system for optical data communication, including: a first sending node including a first data item for transmission to a first receiving node during a first timeslot; a second sending node including a second data item for transmission during a second timeslot; a first optical data link (ODL) and a second ODL; a first output switch configured to switch the first data item from the first sending node onto the first ODL during the first timeslot; a second output switch configured to switch the second data item from the second sending node onto the first ODL during the second timeslot; an optical coupler connecting the first and second ODL; and a first input switch operatively connecting the first receiving node with the second ODL and configured to switch the first data item from the second ODL to the first receiving node during the first timeslot.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: March 26, 2013
    Assignee: Oracle International Corporation
    Inventors: Pranay Koka, Michael Oliver McCracken, Herbert Dewitt Schwetman, Jr., Xuezhe Zheng, Ashok Krishnamoorthy
  • Patent number: 8385740
    Abstract: A method of arbitrating data transmissions to prevent data collisions in an optical data interconnect system including a transmitting node, a plurality of receiving nodes, and one or more remaining nodes connected through an optical data channel. The method involves transmitting a transmission request signal from the transmitting node over an arbitration channel corresponding to the transmitting node, monitoring, at the transmitting node, a plurality of arbitration channels corresponding to each of the plurality of receiving nodes and the one or more remaining nodes at the transmitting node for a predetermined period of time, determining a start time for a data transmission from the transmitting node based on the monitored signals to prevent a data collision, and initiating a data transmission of a data signal from the transmitting node over the optical data channel at the determined start time.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: February 26, 2013
    Assignee: Oracle America, Inc.
    Inventors: Brian O'Krafka, Pranay Koka, John E. Cunningham, Ashok Krishnamoorthy, Xuezhe Zheng
  • Patent number: 8285140
    Abstract: A system including first and second sending nodes, a horizontal optical data link (ODL) having optical signals propagating in opposite directions in first and second waveguide segments, a vertical ODL having optical signals propagating in the same direction throughout third and fourth waveguide segments, a first optical output switch operatively connecting the first sending node and the first waveguide segment and configured to switch first data item onto the first waveguide segment during a first timeslot, a second optical output switch operatively connecting the second sending node and the second waveguide segment and configured to switch second data item onto the second waveguide segment during a second timeslot, and an optical coupler pair operatively connecting the first and second waveguide segments to the third and fourth waveguide segments, respectively, and redirecting the first and the second data items from the horizontal to the vertical ODL.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: October 9, 2012
    Assignee: Oracle International Corporation
    Inventors: Michael Oliver McCracken, Pranay Koka, Herbert Dewitt Schwetman, Jr., Xuezhe Zheng, Ashok Krishnamoorthy
  • Patent number: 8103165
    Abstract: A method of detecting transmission collisions in an optical data interconnect system. The method includes initiating a data transmission of a data signal from a transmitting node over the optical data channel, transmitting a first collision detect signal from the transmitting node throughout a duration of the data transmission where the first collision detect signal is transmitted over an optical detection channel corresponding to the transmitting node, monitoring at the transmitting node of the optical data interconnect system for a predetermined period of time, where the optical data interconnect system further includes optical collision detection channels corresponding to each of a plurality of receiving nodes and one or more remaining nodes, and identifying a transmission collision when a second collision signal is received through one of the optical collision detection channels at the transmitting node during the predetermined period of time.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: January 24, 2012
    Assignee: Oracle America, Inc.
    Inventors: Brian W. O'Krafka, Pranay Koka, John E. Cunningham, Ashok Krishnamoorthy, Xuezhe Zheng
  • Patent number: 8026111
    Abstract: A method for improving signal levels between capacitively-coupled chips in proximity communication (PxC) includes depositing a high permittivity dielectric material layer over a signal pad of a first chip, and placing a second chip in close proximity to the first chip such that faces of the signal pads align to enable for capacitive signal coupling. The high permittivity dielectric material layer that fills at least a portion of a gap between the first chip and the second chip, and improves capacitive coupling between signal pads of the first chip and the second chip by providing for an increased permittivity in the gap between the first chip and the second chip. The increased permittivity ensures that electric fields are substantially confined to a space between the signal pad of the first chip and the signal pad of the second chip.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: September 27, 2011
    Assignee: Oracle America, Inc.
    Inventors: Ashok Krishnamoorthy, John E. Cunningham
  • Patent number: 8014636
    Abstract: A phase modulation waveguide structure includes one of a semiconductor and a semiconductor-on-insulator substrate, a doped semiconductor layer formed over the one of a semiconductor and a semiconductor-on-insulator substrate, the doped semiconductor portion including a waveguide rib protruding from a surface thereof not in contact with the one of a semiconductor and a semiconductor-on-insulator substrate, and an electrical contact on top of the waveguide rib. The electrical contact is formed of a material with an optical refractive index close to that of a surrounding oxide layer that surrounds the waveguide rib and the electrical contact and lower than the optical refractive index of the doped semiconductor layer. During propagation of an optical mode within the waveguide structure, the electrical contact isolates the optical mode between the doped semiconductor layer and a metal electrode contact on top of the electrical contact.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: September 6, 2011
    Assignee: Oracle America
    Inventors: Ivan Shubin, Guoliang Li, John E. Cunningham, Ashok Krishnamoorthy, Xuezhe Zheng
  • Publication number: 20110200335
    Abstract: A system for optical data communication, including: a first sending node including a first data item for transmission to a first receiving node during a first timeslot; a second sending node including a second data item for transmission during a second timeslot; a first optical data link (ODL) and a second ODL; a first output switch configured to switch the first data item from the first sending node onto the first ODL during the first timeslot; a second output switch configured to switch the second data item from the second sending node onto the first ODL during the second timeslot; an optical coupler connecting the first and second ODL; and a first input switch operatively connecting the first receiving node with the second ODL and configured to switch the first data item from the second ODL to the first receiving node during the first timeslot.
    Type: Application
    Filed: February 17, 2010
    Publication date: August 18, 2011
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Pranay Koka, Michael Oliver McCracken, Herbert Dewitt Schwetman, Xuezhe Zheng, Ashok Krishnamoorthy
  • Publication number: 20110200332
    Abstract: A system including first and second sending nodes, a horizontal optical data link (ODL) having optical signals propagating in opposite directions in first and second waveguide segments, a vertical ODL having optical signals propagating in the same direction throughout third and fourth waveguide segments, a first optical output switch operatively connecting the first sending node and the first waveguide segment and configured to switch first data item onto the first waveguide segment during a first timeslot, a second optical output switch operatively connecting the second sending node and the second waveguide segment and configured to switch second data item onto the second waveguide segment during a second timeslot, and an optical coupler pair operatively connecting the first and second waveguide segments to the third and fourth waveguide segments, respectively, and redirecting the first and the second data items from the horizontal to the vertical ODL.
    Type: Application
    Filed: March 12, 2010
    Publication date: August 18, 2011
    Applicant: Oracle International Corporation
    Inventors: Michael Oliver McCracken, Pranay Koka, Herbert Dewitt Schwetman, Xuezhe Zheng, Ashok Krishnamoorthy
  • Publication number: 20110179208
    Abstract: A method for arbitration including selecting, for an arbitration interval corresponding to a timeslot, a sending node from a plurality of sending nodes in an arbitration domain, where the plurality of sending nodes include a plurality of source counters; broadcasting, by the sending node and in response to selecting the sending node, a transmitter arbitration request for the timeslot during the arbitration interval; receiving, by the plurality of sending nodes, the transmitter arbitration request; incrementing the plurality of source counters in response to receiving the transmitter arbitration request; and sending, during the timeslot, a data item from the sending node to a receiving node via an optical data channel.
    Type: Application
    Filed: January 15, 2010
    Publication date: July 21, 2011
    Applicant: SUN MICROSYSTEMS, INC.
    Inventors: Pranay Koka, Michael Oliver McCracken, Herbert Dewitt Schwetman, JR., Xuezhe Zheng, Ashok Krishnamoorthy
  • Publication number: 20110103397
    Abstract: A method for arbitration in an arbitration domain. The method includes: receiving, by each node of a plurality of nodes in the arbitration domain, an arbitration request from each sending node of the plurality of nodes in the arbitration domain, where the plurality of nodes in the arbitration domain each use a shared data channel to send data to a set of receiving nodes; assigning, by each node in the arbitration domain, consecutive time slots to each sending node based on a plurality of priorities assigned to the plurality of nodes in the arbitration domain; for each time slot: sending, from the arbitration domain, a switch request to a receiving node designated by the sending node, where the receiving node is in the set of receiving nodes; and sending, by the sending node, data to the receiving node via the shared data channel during the time slot.
    Type: Application
    Filed: October 30, 2009
    Publication date: May 5, 2011
    Applicant: SUN MICROSYSTEMS, INC.
    Inventors: Pranay Koka, Michael Oliver McCracken, Herbert DeWitt Schwetman, JR., Xuezhe Zheng, Ashok Krishnamoorthy
  • Publication number: 20100215309
    Abstract: A phase modulation waveguide structure includes one of a semiconductor and a semiconductor-on-insulator substrate, a doped semiconductor layer formed over the one of a semiconductor and a semiconductor-on-insulator substrate, the doped semiconductor portion including a waveguide rib protruding from a surface thereof not in contact with the one of a semiconductor and a semiconductor-on-insulator substrate, and an electrical contact on top of the waveguide rib. The electrical contact is formed of a material with an optical refractive index close to that of a surrounding oxide layer that surrounds the waveguide rib and the electrical contact and lower than the optical refractive index of the doped semiconductor layer. During propagation of an optical mode within the waveguide structure, the electrical contact isolates the optical mode between the doped semiconductor layer and a metal electrode contact on top of the electrical contact.
    Type: Application
    Filed: February 20, 2009
    Publication date: August 26, 2010
    Applicant: SUN MICROSYSTEMS, INC.
    Inventors: Ivan Shubin, Guoliang Li, John E. Cunningham, Ashok Krishnamoorthy, Xuezhe Zheng
  • Publication number: 20100213606
    Abstract: A method for improving signal levels between capacitively-coupled chips in proximity communication (PxC) includes depositing a high permittivity dielectric material layer over a signal pad of a first chip, and placing a second chip in close proximity to the first chip such that faces of the signal pads align to enable for capacitive signal coupling. The high permittivity dielectric material layer that fills at least a portion of a gap between the first chip and the second chip, and improves capacitive coupling between signal pads of the first chip and the second chip by providing for an increased permittivity in the gap between the first chip and the second chip. The increased permittivity ensures that electric fields are substantially confined to a space between the signal pad of the first chip and the signal pad of the second chip.
    Type: Application
    Filed: February 24, 2009
    Publication date: August 26, 2010
    Applicant: SUN MICROSYSTEMS, INC.
    Inventors: Ashok Krishnamoorthy, John E. Cunningham
  • Publication number: 20100014852
    Abstract: A method of detecting transmission collisions in an optical data interconnect system including a transmitting node, a plurality of receiving nodes, and one or more remaining nodes connected through an optical data channel.
    Type: Application
    Filed: July 18, 2008
    Publication date: January 21, 2010
    Applicant: Sun Microsystems, Inc.
    Inventors: Brian W. O'Krafka, Pranay Koka, John E. Cunningham, Ashok Krishnamoorthy, Xuezhe Zheng
  • Publication number: 20100014427
    Abstract: A method of arbitrating data transmissions to prevent data collisions in an optical data interconnect system including a transmitting node, a plurality of receiving nodes, and one or more remaining nodes connected through an optical data channel. The method involves transmitting a transmission request signal from the transmitting node over an arbitration channel corresponding to the transmitting node, monitoring, at the transmitting node, a plurality of arbitration channels corresponding to each of the plurality of receiving nodes and the one or more remaining nodes at the transmitting node for a predetermined period of time, determining a start time for a data transmission from the transmitting node based on the monitored signals to prevent a data collision, and initiating a data transmission of a data signal from the transmitting node over the optical data channel at the determined start time.
    Type: Application
    Filed: July 18, 2008
    Publication date: January 21, 2010
    Applicant: Sun Microsystems, Inc.
    Inventors: Brian W. O'Krafka, Pranay Koka, John E. Cunningham, Ashok Krishnamoorthy, Xuezhe Zheng