Patents by Inventor Ashok Kumar Elluswamy

Ashok Kumar Elluswamy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220284712
    Abstract: A system is comprised of one or more processors coupled to memory. The one or more processors are configured to receive image data based on an image captured using a camera of a vehicle and to utilize the image data as a basis of an input to a trained machine learning model to at least in part identify a distance of an object from the vehicle. The trained machine learning model has been trained using a training image and a correlated output of an emitting distance sensor.
    Type: Application
    Filed: March 23, 2022
    Publication date: September 8, 2022
    Inventors: James Anthony Musk, Swupnil Kumar Sahai, Ashok Kumar Elluswamy
  • Publication number: 20220107651
    Abstract: A processor coupled to memory is configured to receive image data based on an image captured by a camera of a vehicle. The image data is used as a basis of an input to a trained machine learning model trained to predict a three-dimensional trajectory of a machine learning feature. The three-dimensional trajectory of the machine learning feature is provided for automatically controlling the vehicle.
    Type: Application
    Filed: October 14, 2021
    Publication date: April 7, 2022
    Inventors: Ashok Kumar Elluswamy, Matthew Bauch, Christopher Payne, Andrej Karpathy, Dhaval Shroff, Arvind Ramanandan, James Robert Howard Hakewill
  • Patent number: 11288524
    Abstract: A system is comprised of one or more processors coupled to memory. The one or more processors are configured to receive image data based on an image captured using a camera of a vehicle and to utilize the image data as a basis of an input to a trained machine learning model to at least in part identify a distance of an object from the vehicle. The trained machine learning model has been trained using a training image and a correlated output of an emitting distance sensor.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: March 29, 2022
    Assignee: Tesla, Inc.
    Inventors: James Anthony Musk, Swupnil Kumar Sahai, Ashok Kumar Elluswamy
  • Publication number: 20210342637
    Abstract: Sensor data, including a group of time series elements, is received. A training data set is determined, including by determining for at least a selected time series element in the group of time series elements a corresponding ground truth. The corresponding ground truth is based on a plurality of time series elements in the group of time series elements. A processor is used to train a machine learning model using the training dataset.
    Type: Application
    Filed: April 20, 2021
    Publication date: November 4, 2021
    Inventors: Ashok Kumar Elluswamy, Matthew Bauch, Christopher Payne, Andrej Karpathy, Joseph Polin
  • Publication number: 20210326610
    Abstract: A system is comprised of one or more processors coupled to memory. The one or more processors are configured to receive image data based on an image captured using a camera of a vehicle and to utilize the image data as a basis of an input to a trained machine learning model to at least in part identify a distance of an object from the vehicle. The trained machine learning model has been trained using a training image and a correlated output of an emitting distance sensor.
    Type: Application
    Filed: February 19, 2021
    Publication date: October 21, 2021
    Inventors: James Anthony Musk, Swupnil Kumar Sahai, Ashok Kumar Elluswamy
  • Patent number: 11150664
    Abstract: A processor coupled to memory is configured to receive image data based on an image captured by a camera of a vehicle. The image data is used as a basis of an input to a trained machine learning model trained to predict a three-dimensional trajectory of a machine learning feature. The three-dimensional trajectory of the machine learning feature is provided for automatically controlling the vehicle.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: October 19, 2021
    Assignee: Tesla, Inc.
    Inventors: Ashok Kumar Elluswamy, Matthew Bauch, Christopher Payne, Andrej Karpathy, Dhaval Shroff, Arvind Ramanandan, James Robert Howard Hakewill
  • Patent number: 10997461
    Abstract: Sensor data, including a group of time series elements, is received. A training data set is determined, including by determining for at least a selected time series element in the group of time series elements a corresponding ground truth. The corresponding ground truth is based on a plurality of time series elements in the group of time series elements. A processor is used to train a machine learning model using the training dataset.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: May 4, 2021
    Assignee: Tesla, Inc.
    Inventors: Ashok Kumar Elluswamy, Matthew Bauch, Christopher Payne, Andrej Karpathy, Joseph Polin
  • Patent number: 10956755
    Abstract: A system is comprised of one or more processors coupled to memory. The one or more processors are configured to receive image data based on an image captured using a camera of a vehicle and to utilize the image data as a basis of an input to a trained machine learning model to at least in part identify a distance of an object from the vehicle. The trained machine learning model has been trained using a training image and a correlated output of an emitting distance sensor.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: March 23, 2021
    Assignee: Tesla, Inc.
    Inventors: James Anthony Musk, Swupnil Kumar Sahai, Ashok Kumar Elluswamy
  • Publication number: 20200265247
    Abstract: A system is comprised of one or more processors coupled to memory. The one or more processors are configured to receive image data based on an image captured using a camera of a vehicle and to utilize the image data as a basis of an input to a trained machine learning model to at least in part identify a distance of an object from the vehicle. The trained machine learning model has been trained using a training image and a correlated output of an emitting distance sensor.
    Type: Application
    Filed: February 19, 2019
    Publication date: August 20, 2020
    Inventors: James Anthony Musk, Swupnil Kumar Sahai, Ashok Kumar Elluswamy
  • Publication number: 20200249685
    Abstract: A processor coupled to memory is configured to receive image data based on an image captured by a camera of a vehicle. The image data is used as a basis of an input to a trained machine learning model trained to predict a three-dimensional trajectory of a machine learning feature. The three-dimensional trajectory of the machine learning feature is provided for automatically controlling the vehicle.
    Type: Application
    Filed: February 1, 2019
    Publication date: August 6, 2020
    Inventors: Ashok Kumar Elluswamy, Matthew Bauch, Christopher Payne, Andrej Karpathy, Dhaval Shroff, Arvind Ramanandan, James Robert Howard Hakewill
  • Publication number: 20200250473
    Abstract: Sensor data, including a group of time series elements, is received. A training data set is determined, including by determining for at least a selected time series element in the group of time series elements a corresponding ground truth. The corresponding ground truth is based on a plurality of time series elements in the group of time series elements. A processor is used to train a machine learning model using the training dataset.
    Type: Application
    Filed: February 1, 2019
    Publication date: August 6, 2020
    Inventors: Ashok Kumar Elluswamy, Matthew Bauch, Christopher Payne, Andrej Karpathy, Joseph Polin