Patents by Inventor Ashok Lahiri
Ashok Lahiri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220181702Abstract: A process for merging webs for the production of an electrode assembly for a secondary battery, the process comprising: moving a first web comprising a population of first components for electrode sub-units, the first components delineated by corresponding weakened patterns, and a population of first conveying features. Moving a second web comprising a population of second components for the electrode sub-units, the second components delineated by corresponding weakened patterns, and a population of second conveying features. Conveying a receiving member, the receiving member comprising a plurality of projections. Receiving the first web on the receiving member. Overlaying, the second web on the first web such that the first components are aligned with the second components and the conveying features of the second web are engaged by the plurality of projections on the receiving member. The second web merge location being spaced from the first web merge location.Type: ApplicationFiled: December 8, 2021Publication date: June 9, 2022Inventors: Robert S. Busacca, Bruno A. Valdes, Murali Ramasubramanian, Ashok Lahiri, Gardner Cameron Dales, John F. Varni, Gunther A. Koblmiller, Robert F. Kinchen, Kim L. Fortunati
-
Patent number: 11355816Abstract: An electrode structure for use in an energy storage device, the electrode structure comprising a population of electrodes, a population of counter-electrodes and an electrically insulating material layer separating members of the electrode population from members of the counter-electrode population, each member of the electrode population having a longitudinal axis AE that is surrounded by the electrically insulating separator layer.Type: GrantFiled: June 30, 2020Date of Patent: June 7, 2022Assignee: Enovix Operations Inc.Inventors: Murali Ramasubramanian, Michael Armstrong, Brian E. Brusca, Vladimir Dioumaev, Gunther A. Koblmiller, Ashok Lahiri, Laurie J. Lauchlan, Harrold J. Rust, III, Nirav S. Shah, Robert M. Spotnitz, James D. Wilcox
-
Publication number: 20220173485Abstract: Embodiments of secondary batteries having electrode assemblies are provided. A secondary battery can comprise an electrode assembly having a stacked series of layers, the stacked series of layers having an offset between electrode and counter-electrode layers in a unit cell member of the stacked series. A set of constraints can be provided with a primary constraint system with first and second primary growth constraints separated from each other in a longitudinal direction, and connected by at least one primary connecting member, and a secondary constraint system comprises first and second secondary growth constraints separated in a second direction and connected by members of the stacked series of layers. The primary constraint system may at least partially restrain growth of the electrode assembly in the longitudinal direction, and the secondary constraint system may at least partially restrain growth in the second direction that is orthogonal to the longitudinal direction.Type: ApplicationFiled: February 17, 2022Publication date: June 2, 2022Inventors: Robert S. BUSACCA, Ashok LAHIRI, Murali RAMASUBRAMANIAN, Bruno A. VALDES, Gardner Cameron DALES, Christopher J. SPINDT, Geoffrey Matthew HO, Harrold J. RUST, III, James D. WILCOX, John F. VARNI, Kim Han LEE, Nirav S. SHAH, Richard J. CONTRERAS, Lynn VAN ERDEN, Ken S. MATSUBAYASHI, Jeremie J. DALTON, Jason Newton HOWARD, Robert Keith ROSEN, Jonathan C. DOAN, Michael J. ARMSTRONG, Anthony CALCATERRA, Benjamin L. CARDOZO, Joshua David WINANS, Neelam SINGH, Jeffrey Glenn BUCK, Thomas John SCHUERLEIN, Kim Lester FORTUNATI, Neal SARSWAT
-
Publication number: 20220166051Abstract: A secondary battery for cycling between a charged and a discharged state is provided. The secondary battery has an electrode assembly having a population of anode structures, a population of cathode structures, and an electrically insulating microporous separator material. The electrode assembly also has a set of electrode constraints that at least partially restrains growth of the electrode assembly. Members of the anode structure population have a first cross-sectional area, A1 when the secondary battery is in the charged state and a second cross-sectional area, A2, when the secondary battery is in the discharged state, and members of the cathode structure population have a first cross-sectional area, C1 when the secondary battery is in the charged state and a second cross-sectional area, C2, when the secondary battery is in the discharged state, where A1 is greater than A2, and C1 is less than C2.Type: ApplicationFiled: June 30, 2021Publication date: May 26, 2022Inventors: Robert S. BUSACCA, Murali RAMASUBRAMANIAN, Bruno A. VALDES, James D. WILCOX, Christopher J. SPINDT, Geoffrey Matthew HO, John F. VARNI, Kim Han LEE, Richard J. CONTRERAS, Thomas John SCHUERLEIN, Ashok LAHIRI
-
Publication number: 20220158220Abstract: A secondary battery is provided for cycling between a charged and a discharged state, the secondary battery including a battery enclosure, an electrode assembly, carrier ions, a non-aqueous liquid electrolyte within the battery enclosure, and a set of electrode constraints. The set of electrode constraints includes a primary constraint system having first and second primary growth constraints and at least one primary connecting member, the first and second primary growth constraints separated from each other in the longitudinal direction, wherein the primary constraint array restrains growth of the electrode assembly in the longitudinal direction such that any increase in the Feret diameter of the electrode assembly in the longitudinal direction over 20 consecutive cycles of the secondary battery is less than 20%.Type: ApplicationFiled: June 1, 2021Publication date: May 19, 2022Inventors: Robert S. BUSACCA, Ashok LAHIRI, Murali RAMASUBRAMANIAN, Bruno A. VALDES, Gardner Cameron DALES, Christopher J. SPINDT, Geoffrey Matthew HO, Harrold J. RUST, III, James D. WILCOX, John F. VARNI, Kim Han LEE, Nirav S. SHAH, Richard J. CONTRERAS, Lynn VAN ERDEN, Vladimir DIOUMAEV
-
Publication number: 20220149423Abstract: A energy storage device for cycling between a charged state and a discharged state, the energy storage device including an enclosure, an electrode assembly and a non-aqueous liquid electrolyte within the enclosure, and a constraint that maintains a pressure on the electrode assembly as the energy storage device is cycled between the charged and the discharged states.Type: ApplicationFiled: January 24, 2022Publication date: May 12, 2022Inventors: Robert S. BUSACCA, Ashok LAHIRI, Murali RAMASUBRAMANIAN, Bruno A. VALDES, Gardner Cameron DALES, Christopher J. SPINDT, Geoffrey Matthew HO, Harrold J. RUST, III, James D. WILCOX, John F. VARNI, Kim Han LEE, Nirav S. SHAH, Richard J. CONTRERAS, Lynn VAN ERDEN, Ken S. MATSUBAYASHI, Jeremie J. DALTON
-
Publication number: 20220123370Abstract: Embodiments of a method for the preparation of an electrode assembly, include removing a population of negative electrode subunits from a negative electrode sheet, the negative electrode sheet comprising a negative electrode sheet edge margin and at least one negative electrode sheet weakened region that is internal to the negative electrode sheet edge margin, removing a population of separator layer subunits from a separator sheet, and removing a population of positive electrode subunits from a positive electrode sheet, the positive electrode sheet comprising a positive electrode edge margin and at least one positive electrode sheet weakened region that is internal to the positive electrode sheet edge margin, and stacking members of the negative electrode subunit population, the separator layer subunit population and the positive electrode subunit population in a stacking direction to form a stacked population of unit cells.Type: ApplicationFiled: December 27, 2021Publication date: April 21, 2022Inventors: Robert S. BUSACCA, Ashok LAHIRI, Murali RAMASUBRAMANIAN, Bruno A. VALDES, Gardner Cameron DALES, Harrold J. RUST, III, John F. VARNI, Kim Han LEE, Nirav S. SHAH, Richard J. CONTRERAS, Jeremie J. DALTON, Jonathan C. DOAN, Michael J. ARMSTRONG, Anthony CALCATERRA, Benjamin J. CARDOZO, Joshua David WINANS, Neelam SINGH, Jeffrey Glenn BUCK, Thomas John SCHUERLEIN, Kim Lester FORTUNATI, Neal SARSWAT
-
Publication number: 20220115711Abstract: A secondary battery for cycling between a charged and a discharged state, wherein a 2D map of the median vertical position of the first opposing vertical end surface of the electrode active material in the X-Z plane, along the length LE of the electrode active material layer, traces a first vertical end surface plot, EVP1, a 2D map of the median vertical position of the first opposing vertical end surface of the counter-electrode active material layer in the X-Z plane, along the length LC of the counter-electrode active material layer, traces a first vertical end surface plot, CEVP1, wherein for at least 60% of the length Lc of the first counter-electrode active material layer (i) the absolute value of a separation distance, SZ1, between the plots EVP1 and CEVP1 measured in the vertical direction is 1000 ?m?|SZ1|?5 ?m.Type: ApplicationFiled: December 20, 2021Publication date: April 14, 2022Inventors: Robert S. BUSACCA, Ashok LAHIRI, Murali RAMASUBRAMANIAN, Bruno A. VALDES, Gardner Cameron DALES, Christopher J. SPINDT, Geoffrey Matthew HO, Harrold J. RUST, III, James D. WILCOX, John F. VARNI, Kim Han LEE, Nirav S. SHAH, Richard J. CONTRERAS, Lynn VAN ERDEN, Ken S. MATSUBAYASHI, Jeremie J. DALTON, Jason Newton HOWARD, Robert Keith ROSEN
-
Publication number: 20220115753Abstract: Secondary batteries and methods of manufacture thereof are provided. A secondary battery can comprise an offset between electrode and counter-electrode layers in a unit cell. Secondary batteries can be prepared by removing a population of negative electrode subunits from a negative electrode sheet, the negative electrode sheet comprising a negative electrode sheet edge margin and at least one negative electrode sheet weakened region that is internal to the negative electrode sheet edge margin, removing a population of separator layer subunits from a separator sheet, and removing a population of positive electrode subunits from a positive electrode sheet, the positive electrode sheet comprising a positive electrode edge margin and at least one positive electrode sheet weakened region that is internal to the positive electrode sheet edge margin, and stacking members of the negative electrode subunit population, the separator layer subunit population and the positive electrode subunit population.Type: ApplicationFiled: October 19, 2021Publication date: April 14, 2022Inventors: Robert S. BUSACCA, Ashok LAHIRI, Murali RAMASUBRAMANIAN, Bruno A. VALDES, Gardner Cameron DALES, Christopher J. SPINDT, Geoffrey Matthew HO, Harrold J. RUST, III, James D. WILCOX, John F. VARNI, Kim Han LEE, Nirav S. SHAH, Richard J. CONTRERAS, Lynn VAN ERDEN, Ken S. MATSUBAYASHI, Jeremie J. DALTON, Jason Newton HOWARD, Robert Keith ROSEN, Jonathan C. DOAN, Michael J. ARMSTRONG, Anthony CALCATERRA, Benjamin L. CARDOZO, Joshua David WINANS, Neelam SINGH, Jeffrey Glenn BUCK, Thomas John SCHUERLEIN, Kim Lester FORTUNATI, Neal SARSWAT
-
Publication number: 20220093903Abstract: A process for delineating a population of electrode structures in a web is disclosed. The web has a down-web direction, a cross-web direction, an electrochemically active layer, and an electrically conductive layer. The process includes laser machining the web in at least the cross-web direction to delineate members of the electrode structure population in the web without releasing the delineated members from the web and forming an alignment feature in the web that is adapted for locating each delineated member of the electrode structure population in the web.Type: ApplicationFiled: September 22, 2021Publication date: March 24, 2022Inventors: Harrold J. RUST, Murali RAMASUBRAMANIAN, Ashok LAHIRI, Bruno A. VALDES, Jeffrey Glenn BUCK, Kim Lester FORTUNATI, Robert S. BUSACCA, John F. VARNI, Joshua David WINANS, Neal SARSWAT, Gunther A. KOBLMILLER, Miles E. BEAVEN, Jeffrey A. MOSS, Michael E. ANDRES
-
Publication number: 20220069421Abstract: Secondary batteries and methods of manufacture thereof are provided. A secondary battery can comprise an electrode layer comprising a population of spacer structures comprising a material other than the electrode active material, wherein (a) the spacer population occupies a total volume within the electrode layer within the range of about 0.1% to about 35% of the volume, VE, of the electrode layer, and (b) a member of the spacer population is located within each subvolume of the electrode layer comprising (i) at least 25% of the volume, VE, of the electrode layer, and (ii) bounded on all sides by (aa) the unit cell portion of the electrode current collector, (bb) the separator layer, (cc) the top surface of the electrode layer, (dd) the bottom surface of the electrode layer, (ee) the first end surface of the electrode layer, and (ff) the second end surface of the electrode layer.Type: ApplicationFiled: November 12, 2021Publication date: March 3, 2022Inventors: Jeremie J. DALTON, Robert S. BUSACCA, Ashok LAHIRI, RAMASUBRAMANIAN RAMASUBRAMANIAN, Bruno A. VALDES, Kim Han LEE, Anthony CALCATERRA, Benjamin L. CARDOZO
-
Patent number: 11264680Abstract: Embodiments of secondary batteries having electrode assemblies are provided. A secondary battery can comprise an electrode assembly having a stacked series of layers, the stacked series of layers having an offset between electrode and counter-electrode layers in a unit cell member of the stacked series. A set of constraints can be provided with a primary constraint system with first and second primary growth constraints separated from each other in a longitudinal direction, and connected by at least one primary connecting member, and a secondary constraint system comprises first and second secondary growth constraints separated in a second direction and connected by members of the stacked series of layers. The primary constraint system may at least partially restrain growth of the electrode assembly in the longitudinal direction, and the secondary constraint system may at least partially restrain growth in the second direction that is orthogonal to the longitudinal direction.Type: GrantFiled: November 15, 2018Date of Patent: March 1, 2022Assignee: ENOVIX CORPORATIONInventors: Robert S. Busacca, Ashok Lahiri, Murali Ramasubramanian, Bruno A. Valdes, Gardner Cameron Dales, Christopher J. Spindt, Geoffrey Matthew Ho, Harrold J. Rust, III, James D. Wilcox, John F. Varni, Kim Han Lee, Nirav S. Shah, Richard J. Contreras, Lynn Van Erden, Ken S. Matsubayashi, Jeremie J. Dalton, Jason Newton Howard, Robert Keith Rosen, Jonathan C. Doan, Michael J. Armstrong, Anthony Calcaterra, Benjamin L. Cardozo, Joshua David Winans, Neelam Singh, Jeffrey Glenn Buck, Thomas John Schuerlein, Kim Lester Fortunati, Neal Sarswat
-
Patent number: 11239488Abstract: A energy storage device for cycling between a charged state and a discharged state, the energy storage device including an enclosure, an electrode assembly and a non-aqueous liquid electrolyte within the enclosure, and a constraint that maintains a pressure on the electrode assembly as the energy storage device is cycled between the charged and the discharged states.Type: GrantFiled: March 25, 2019Date of Patent: February 1, 2022Assignee: ENOVIX CORPORATIONInventors: Robert S. Busacca, Ashok Lahiri, Murali Ramasubramanian, Bruno A. Valdes, Gardner Cameron Dales, Christopher J. Spindt, Geoffrey Matthew Ho, Harrold J. Rust, III, James D. Wilcox, John F. Varni, Kim Han Lee, Nirav S. Shah, Richard J. Contreras, Lynn Van Erden, Ken S. Matsubayashi, Jeremie J. Dalton
-
Patent number: 11211639Abstract: Embodiments of a method for the preparation of an electrode assembly, include removing a population of negative electrode subunits from a negative electrode sheet, the negative electrode sheet comprising a negative electrode sheet edge margin and at least one negative electrode sheet weakened region that is internal to the negative electrode sheet edge margin, removing a population of separator layer subunits from a separator sheet, and removing a population of positive electrode subunits from a positive electrode sheet, the positive electrode sheet comprising a positive electrode edge margin and at least one positive electrode sheet weakened region that is internal to the positive electrode sheet edge margin, and stacking members of the negative electrode subunit population, the separator layer subunit population and the positive electrode subunit population in a stacking direction to form a stacked population of unit cells.Type: GrantFiled: August 6, 2019Date of Patent: December 28, 2021Assignee: ENOVIX CORPORATIONInventors: Robert S. Busacca, Ashok Lahiri, Murali Ramasubramanian, Bruno A. Valdes, Gardner Cameron Dales, Harrold J. Rust, III, John F. Varni, Kim Han Lee, Nirav S. Shah, Richard J. Contreras, Jeremie J. Dalton, Jonathan C. Doan, Michael J. Armstrong, Anthony Calcaterra, Benjamin J. Cardozo, Joshua David Winans, Neelam Singh, Jeffrey Glenn Buck, Thomas John Schuerlein, Kim Lester Fortunati, Neal Sarswat
-
Patent number: 11205803Abstract: A secondary battery for cycling between a charged and a discharged state, wherein a 2D map of the median vertical position of the first opposing vertical end surface of the electrode active material in the X-Z plane, along the length LE of the electrode active material layer, traces a first vertical end surface plot, EVP1, a 2D map of the median vertical position of the first opposing vertical end surface of the counter-electrode active material layer in the X-Z plane, along the length LC of the counter-electrode active material layer, traces a first vertical end surface plot, CEVP1, wherein for at least 60% of the length Lc of the first counter-electrode active material layer (i) the absolute value of a separation distance, SZ1, between the plots EVP1 and CEVP1 measured in the vertical direction is 1000 ?m?|SZ1|?5 ?m.Type: GrantFiled: January 25, 2019Date of Patent: December 21, 2021Assignee: Enovix CorporationInventors: Robert S. Busacca, Ashok Lahiri, Murali Ramasubramanian, Bruno A. Valdes, Gardner Cameron Dales, Christopher J. Spindt, Geoffrey Matthew Ho, Harrold J. Rust, III, James D. Wilcox, John F. Varni, Kim Han Lee, Nirav S. Shah, Richard J. Contreras, Lynn Van Erden, Ken S. Matsubayashi, Jeremie J. Dalton, Jason Newton Howard, Robert Keith Rosen
-
Patent number: 11128020Abstract: Secondary batteries and methods of manufacture thereof are provided. A secondary battery can comprise an offset between electrode and counter-electrode layers in a unit cell. Secondary batteries can be prepared by removing a population of negative electrode subunits from a negative electrode sheet, the negative electrode sheet comprising a negative electrode sheet edge margin and at least one negative electrode sheet weakened region that is internal to the negative electrode sheet edge margin, removing a population of separator layer subunits from a separator sheet, and removing a population of positive electrode subunits from a positive electrode sheet, the positive electrode sheet comprising a positive electrode edge margin and at least one positive electrode sheet weakened region that is internal to the positive electrode sheet edge margin, and stacking members of the negative electrode subunit population, the separator layer subunit population and the positive electrode subunit population.Type: GrantFiled: November 15, 2018Date of Patent: September 21, 2021Assignee: Enovix CorporationInventors: Robert S. Busacca, Ashok Lahiri, Murali Ramasubramanian, Bruno A. Valdes, Gardner Cameron Dales, Christopher J. Spindt, Geoffrey Matthew Ho, Harrold J. Rust, III, James D. Wilcox, John F. Varni, Kim Han Lee, Nirav S. Shah, Richard J. Contreras, Lynn Van Erden, Ken S. Matsubayashi, Jeremie J. Dalton, Jason Newton Howard, Robert Keith Rosen, Jonathan C. Doan, Michael J. Armstrong, Anthony Calcaterra, Benjamin L. Cardozo, Joshua David Winans, Neelam Singh, Jeffrey Glenn Buck, Thomas John Schuerlein, Kim Lester Fortunati, Neal Sarswat
-
Patent number: 11081718Abstract: A secondary battery is provided for cycling between a charged and a discharged state, the secondary battery including a battery enclosure, an electrode assembly, carrier ions, a non-aqueous liquid electrolyte within the battery enclosure, and a set of electrode constraints. The set of electrode constraints includes a primary constraint system having first and second primary growth constraints and at least one primary connecting member, the first and second primary growth constraints separated from each other in the longitudinal direction, wherein the primary constraint array restrains growth of the electrode assembly in the longitudinal direction such that any increase in the Feret diameter of the electrode assembly in the longitudinal direction over 20 consecutive cycles of the secondary battery is less than 20%.Type: GrantFiled: January 7, 2019Date of Patent: August 3, 2021Assignee: ENOVIX CORPORATIONInventors: Robert S. Busacca, Ashok Lahiri, Murali Ramasubramanian, Bruno A. Valdes, Gardner Cameron Dales, Christopher J. Spindt, Geoffrey Matthew Ho, Harrold J. Rust, III, James D. Wilcox, John F. Varni, Kim Han Lee, Nirav S. Shah, Richard J. Contreras, Lynn Van Erden, Vladimir Dioumaev
-
Patent number: 11063299Abstract: A secondary battery for cycling between a charged and a discharged state is provided. The secondary battery has an electrode assembly having a population of anode structures, a population of cathode structures, and an electrically insulating microporous separator material. The electrode assembly also has a set of electrode constraints that at least partially restrains growth of the electrode assembly. Members of the anode structure population have a first cross-sectional area, A1 when the secondary battery is in the charged state and a second cross-sectional area, A2, when the secondary battery is in the discharged state, and members of the cathode structure population have a first cross-sectional area, C1 when the secondary battery is in the charged state and a second cross-sectional area, C2, when the secondary battery is in the discharged state, where A1 is greater than A2, and C1 is less than C2.Type: GrantFiled: November 16, 2017Date of Patent: July 13, 2021Assignee: ENOVIX CORPORATIONInventors: Robert S. Busacca, Murali Ramasubramanian, Bruno A. Valdes, James D. Wilcox, Christopher J. Spindt, Geoffrey Matthew Ho, John F. Varni, Kim Han Lee, Richard J. Contreras, Thomas John Schuerlein, Ashok Lahiri
-
Publication number: 20200381785Abstract: A method is provided for activating a secondary battery having a negative electrode, a positive electrode, and a microporous separator between the negative and positive electrodes permeated with carrier-ion containing electrolyte, the negative electrode having anodically active silicon or an alloy thereof. The method includes transferring carrier ions from the positive electrode to the negative electrode to at least partially charge the secondary battery, and transferring carrier ions from an auxiliary electrode to the positive electrode, to provide the secondary battery with a positive electrode end of discharge voltage Vpos,eod and a negative electrode end of discharge voltage Vneg,eod when the cell is at a predefined Vcell,eod value, the value of Vpos,eod corresponding to a voltage at which the state of charge of the positive electrode is at least 95% of its coulombic capacity and Vneg,eod is at least 0.4 V (vs Li) but less than 0.9 V (vs Li).Type: ApplicationFiled: August 20, 2020Publication date: December 3, 2020Inventors: Christopher G. CASTLEDINE, David T. FOUCHARD, Jonathan C. DOAN, Christopher J. SPINDT, Robert M. SPOTNIZ, James D. WILCOX, Ashok LAHIRI, Murali RAMASUBRAMANIAN
-
Publication number: 20200381771Abstract: An electrode structure for use in an energy storage device comprising a population of electrodes, a population of counter-electrodes and a microporous separator separating members of the electrode population from members of the counter-electrode population. Each member of the electrode population comprises an electrode active material layer and an electrode current conductor layer, and each member of the electrode population has a bottom, a top, a length LE, a width WE and a height HE, wherein the ratio of LE to each of WE and HE is at least 5:1, the ratio of HE to WE is between 0.4:1 and 1000:1, and the electrode current collector layer of each member of the electrode population has a length LC that is measured in the same direction as and is at least 50% of length LE.Type: ApplicationFiled: August 21, 2020Publication date: December 3, 2020Inventors: Harrold J. Rust, III, Ashok Lahiri, Murali Ramasubramanian, Robert M. Spotnitz, Robert A. Cole, Gunther A. Koblmiller, Nirav S. Shah, Brian E. Brusca, Christopher G. Castledine, Laurie J. Lauchlan, James D. Wilcox