Patents by Inventor Ashok Mathew

Ashok Mathew has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11415526
    Abstract: An inspection system is disclosed. The inspection system includes a shared memory configured to receive image data from a defect inspection tool and a controller communicatively coupled to the shared memory. The controller includes a host image module configured to apply one or more general-purpose defect-inspection algorithms to the image data using central-processing unit (CPU) architectures, a results module configured to generate inspection data for defects identified by the host image module, and secondary image module(s) configured to apply one or more targeted defect-inspection algorithms to the image data. The secondary image module(s) employ flexible sampling of the image data to match a data processing rate of the host image module within a selected tolerance. The flexible sampling of the image data is adjusted responsive to the inspection data generated by the results module and the host image module.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: August 16, 2022
    Assignee: KLA Corporation
    Inventors: Brian Duffy, Mark Roulo, Ashok Mathew, Jing Zhang, Kris Bhaskar
  • Patent number: 11204332
    Abstract: Defects from a hot scan can be saved, such as on persistent storage, random access memory, or a split database. The persistent storage can be patch-based virtual inspector virtual analyzer (VIVA) or local storage. Repeater defect detection jobs can determined and the wafer can be inspected based on the repeater defect detection jobs. Repeater defects can be analyzed and corresponding defect records to the repeater defects can be read from the persistent storage. These results may be returned to the high level defect detection controller.
    Type: Grant
    Filed: April 10, 2020
    Date of Patent: December 21, 2021
    Assignee: KLA-Tencor Corporation
    Inventors: Eugene Shifrin, Bjorn Brauer, Sumit Sen, Ashok Mathew, Sreeram Chandrasekaran, Lisheng Gao
  • Publication number: 20210349038
    Abstract: An inspection system is disclosed. The inspection system includes a shared memory configured to receive image data from a defect inspection tool and a controller communicatively coupled to the shared memory. The controller includes a host image module configured to apply one or more general-purpose defect-inspection algorithms to the image data using central-processing unit (CPU) architectures, a results module configured to generate inspection data for defects identified by the host image module, and secondary image module(s) configured to apply one or more targeted defect-inspection algorithms to the image data. The secondary image module(s) employ flexible sampling of the image data to match a data processing rate of the host image module within a selected tolerance. The flexible sampling of the image data is adjusted responsive to the inspection data generated by the results module and the host image module.
    Type: Application
    Filed: December 29, 2020
    Publication date: November 11, 2021
    Inventors: Brian Duffy, Mark Roulo, Ashok Mathew, Jing Zhang, Kris Bhaskar
  • Publication number: 20200240928
    Abstract: Defects from a hot scan can be saved, such as on persistent storage, random access memory, or a split database. The persistent storage can be patch-based virtual inspector virtual analyzer (VIVA) or local storage. Repeater defect detection jobs can determined and the wafer can be inspected based on the repeater defect detection jobs. Repeater defects can be analyzed and corresponding defect records to the repeater defects can be read from the persistent storage. These results may be returned to the high level defect detection controller.
    Type: Application
    Filed: April 10, 2020
    Publication date: July 30, 2020
    Inventors: Eugene Shifrin, Bjorn Brauer, Sumit Sen, Ashok Mathew, Sreeram Chandrasekaran, Lisheng Gao
  • Patent number: 10648925
    Abstract: Defects from a hot scan can be saved, such as on persistent storage, random access memory, or a split database. The persistent storage can be patch-based virtual inspector virtual analyzer (VIVA) or local storage. Repeater defect detection jobs can determined and the wafer can be inspected based on the repeater defect detection jobs. Repeater defects can be analyzed and corresponding defect records to the repeater defects can be read from the persistent storage. These results may be returned to the high level defect detection controller.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: May 12, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: Eugene Shifrin, Bjorn Brauer, Sumit Sen, Ashok Mathew, Sreeram Chandrasekaran, Lisheng Gao
  • Patent number: 10395358
    Abstract: Systems and methods for detecting defects on a reticle are provided. One system includes computer subsystem(s) that include one or more image processing components that acquire images generated by an inspection subsystem for a wafer, a main user interface component that provides information generated for the wafer and the reticle to a user and receives instructions from the user, and an interface component that provides an interface between the one or more image processing components and the main user interface. Unlike currently used systems, the one or more image processing components are configured for performing repeater defect detection by applying a repeater defect detection algorithm to the images acquired by the one or more image processing components, and the repeater defect detection algorithm is configured to detect defects on the wafer using a hot threshold and to identify the defects that are repeater defects.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: August 27, 2019
    Assignee: KLA-Tencor Corp.
    Inventors: Bjorn Brauer, Eugene Shifrin, Ashok Mathew, Chetana Bhaskar, Lisheng Gao, Santosh Bhattacharyya, Hucheng Lee, Benjamin Murray
  • Publication number: 20180348147
    Abstract: Defects from a hot scan can be saved, such as on persistent storage, random access memory, or a split database. The persistent storage can be patch-based virtual inspector virtual analyzer (VIVA) or local storage. Repeater defect detection jobs can determined and the wafer can be inspected based on the repeater defect detection jobs. Repeater defects can be analyzed and corresponding defect records to the repeater defects can be read from the persistent storage. These results may be returned to the high level defect detection controller.
    Type: Application
    Filed: December 1, 2017
    Publication date: December 6, 2018
    Inventors: Eugene Shifrin, Bjorn Brauer, Sumit Sen, Ashok Mathew, Sreeram Chandrasekaran, Lisheng Gao
  • Publication number: 20180130199
    Abstract: Systems and methods for detecting defects on a reticle are provided. One system includes computer subsystem(s) that include one or more image processing components that acquire images generated by an inspection subsystem for a wafer, a main user interface component that provides information generated for the wafer and the reticle to a user and receives instructions from the user, and an interface component that provides an interface between the one or more image processing components and the main user interface. Unlike currently used systems, the one or more image processing components are configured for performing repeater defect detection by applying a repeater defect detection algorithm to the images acquired by the one or more image processing components, and the repeater defect detection algorithm is configured to detect defects on the wafer using a hot threshold and to identify the defects that are repeater defects.
    Type: Application
    Filed: November 6, 2017
    Publication date: May 10, 2018
    Inventors: Bjorn Brauer, Eugene Shifrin, Ashok Mathew, Chetana Bhaskar, Lisheng Gao, Santosh Bhattacharyya, Hucheng Lee, Benjamin Murray
  • Patent number: 9135727
    Abstract: A computer implemented method and apparatus for reconstructing indexed color spaces. The method comprises accessing a plurality of indexed color spaces, wherein each indexed color space comprises a bit depth; and creating one or more unions of two or more indexed color spaces from the plurality of indexed color spaces, wherein the bit depth of the union of the two or more indexed color does not exceed the bit depth of any of the two or more indexed color spaces.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: September 15, 2015
    Assignee: ADOBE SYSTEMS INCORPORATED
    Inventor: Ashok Mathew Kuruvilla
  • Publication number: 20140334725
    Abstract: A computer implemented method and apparatus for reconstructing indexed color spaces. The method comprises accessing a plurality of indexed color spaces, wherein each indexed color space comprises a bit depth; and creating one or more unions of two or more indexed color spaces from the plurality of indexed color spaces, wherein the bit depth of the union of the two or more indexed color does not exceed the bit depth of any of the two or more indexed color spaces.
    Type: Application
    Filed: May 7, 2013
    Publication date: November 13, 2014
    Inventor: Ashok Mathew Kuruvilla
  • Patent number: 8856216
    Abstract: A method and apparatus for performing file services using cloud computing comprises receiving, from a client computer, at least one parameter of a file resident on the client computer and a task to be performed upon the file. In view of the task, creating a virtual file based on the at least one parameter of the file, and dividing the virtual file into a plurality of data chunks. The method identifies a byte range within the virtual file associated with the task and at least one corresponding data chunk from the plurality of data chunks that is within the byte range. The method requests the corresponding data chunk(s) from the client computer, receives the corresponding data chunk(s) from the client, processes the corresponding data chunk(s) in accordance with the task, and sends the processed corresponding data chunk(s) to the client computer.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: October 7, 2014
    Assignee: Adobe Systems Incorporated
    Inventors: Ashok Mathew Kuruvilla, Inder Jeet Singh
  • Publication number: 20130212152
    Abstract: A method and apparatus for performing file services using cloud computing comprises receiving, from a client computer, at least one parameter of a file resident on the client computer and a task to be performed upon the file. In view of the task, creating a virtual file based on the at least one parameter of the file, and dividing the virtual file into a plurality of data chunks. The method identifies a byte range within the virtual file associated with the task and at least one corresponding data chunk from the plurality of data chunks that is within the byte range. The method requests the corresponding data chunk(s) from the client computer, receives the corresponding data chunk(s) from the client, processes the corresponding data chunk(s) in accordance with the task, and sends the processed corresponding data chunk(s) to the client computer.
    Type: Application
    Filed: February 10, 2012
    Publication date: August 15, 2013
    Applicant: Adobe Systems Inc.
    Inventors: Ashok Mathew Kuruvilla, Inder Jeet Singh