Patents by Inventor Ashok V. Joshi

Ashok V. Joshi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150132633
    Abstract: A separator for an alkali metal ion rechargeable battery includes a porous ceramic alkali ion conductive membrane which is inert to liquid alkali ion solution as well as anode and cathode materials. The porous ceramic separator is structurally self-supporting and maintains its structural integrity at high temperature. The ceramic separator may have a thickness of at least 200 ?m and a porosity in the range from 20% to 70%. The separator may be in the form of a clad composite separator structure in which one or more layers of porous and inert ceramic or polymer membrane materials are clad to the alkali ion conductive membrane. The porous and inert alkali ion conductive ceramic membrane may comprise a NaSICON-type, LiSICON-type, or beta alumina material.
    Type: Application
    Filed: November 12, 2014
    Publication date: May 14, 2015
    Inventor: Ashok V. Joshi
  • Publication number: 20150130088
    Abstract: A volatile substance delivery system includes a volatile substance container to contain a volatile substance, a volatile substance delivery structure, and a volatile substance drop delivery system to deliver a drop of the volatile substance to the volatile substance delivery structure for delivery to an ambient environment.
    Type: Application
    Filed: November 10, 2014
    Publication date: May 14, 2015
    Applicant: MICROLIN, LLC
    Inventors: Ashok V. Joshi, David J. Erekson, Jessica Elwell, Jeremy Heiser
  • Patent number: 9011650
    Abstract: An electrochemical cell having a cation-conductive ceramic membrane and an acidic anolyte. Generally, the cell includes a catholyte compartment and an anolyte compartment that are separated by a cation-conductive membrane. While the catholyte compartment houses a primary cathode, the anolyte compartment houses an anode and a secondary cathode. In some cases, a current is passed through the electrodes to cause the secondary cathode to evolve hydrogen gas. In other cases, a current is passed between the electrodes to cause the secondary cathode to evolve hydroxyl ions and hydrogen gas. In still other cases, hydrogen peroxide is channeled between the secondary cathode and the membrane to form hydroxyl ions. In yet other cases, the cell includes a diffusion membrane disposed between the secondary cathode and the anode. In each of the aforementioned cases, the cell functions to maintain the pH of a fluid contacting the membrane at an acceptably high level.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: April 21, 2015
    Assignee: Ceramatec, Inc
    Inventors: Sai Bhavaraju, Ashok V. Joshi
  • Publication number: 20150086826
    Abstract: An intermediate temperature molten sodium-metal halide rechargeable battery utilizes a molten eutectic mixture of sodium haloaluminate salts having a relatively low melting point that enables the battery to operate at substantially lower temperature compared to the traditional ZEBRA battery system and utilize a highly conductive NaSICON solid electrolyte membrane. The positive electrode comprises a mixture of NaX and MX, where X is a halogen selected from Cl, Br and I and M is a metal selected Ni, Fe, and Zn. The positive electrode is disposed in a mixed molten salt positive electrolyte comprising at least two salts that can be represented by the formula NaAlX?4-?X??, where 0<?<4, wherein X? and X? are different halogens selected from Cl, Br and I. The positive electrode may include additional NaX added in a molar ratio ranging from 1:1 to 3:1 of NaX:NaAlX?4-?X??.
    Type: Application
    Filed: September 25, 2014
    Publication date: March 26, 2015
    Inventors: Sai Bhavaraju, Ashok V. Joshi, Mathew Robins, Alexis Eccleston
  • Patent number: 8986520
    Abstract: An apparatus for administering a therapeutic is provided. In various embodiments, the apparatus includes an ozone generator for producing therapeutic oxygen-ozone mixture. The generator includes an electrochemical cell configured to communicate with an accumulator having an anode, a cathode and a power supply in electrical communication with the anode and the cathode. The power supply is configured to create an electric current between the anode and the cathode such that water in the electrochemical cell electrolyzes to produce ozone and oxygen at the anode.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: March 24, 2015
    Assignee: Ceramatec, Inc.
    Inventors: Ashok V. Joshi, James Steppan, Jesse Nachlas, Kieran Murphy
  • Publication number: 20150078988
    Abstract: A process involves separating hydrogen that is produced from a reformer. Specifically, the products, which include hydrogen, CO2 and hydrocarbons, are added to a CaO bed. The CaO reacts with the CO2 to form CaCO3, thereby removing CO2 from the products. The remaining products (e.g., hydrocarbons and hydrogen) may be separated using a hydrogen-sensitive membrane. This membrane will produce a refined, purified supply of hydrogen gas.
    Type: Application
    Filed: August 28, 2014
    Publication date: March 19, 2015
    Inventor: Ashok V. Joshi
  • Publication number: 20150065772
    Abstract: A process is disclosed for removing hydrogen gas that is produced during a DHA (dehydroaromatization) reaction that is used to produce benzene from methane. The hydrogen gas is reacted with a quantity of an alkali metal to produce an alkali metal hydride, which may be separated out from the benzene and any unreacted methane. This removal of the hydrogen gas “drives” the reaction to produce more benzene, thereby increasing the theoretical yield of the DHA reaction.
    Type: Application
    Filed: August 27, 2014
    Publication date: March 5, 2015
    Inventor: Ashok V. Joshi
  • Publication number: 20150061570
    Abstract: A molten sodium secondary cell charges at a high temperature and discharges at a relatively lower temperature. The cell includes a sodium anode and a cathode. A sodium ion conductive solid membrane separates the cathode from the sodium anode and selectively transports sodium ions. A solar energy source includes a photovoltaic system to provide an electric charging potential to the sodium anode and the cathode and a solar thermal concentrator to provide heat to the cathode and catholyte composition to cause the molten sodium secondary cell to charge at a temperature in the range from about 300 to 800° C. The cell has a charge temperature and a charge voltage and a discharge temperature and a discharge voltage. The charge temperature is substantially higher than the discharge temperature, and the charge voltage is lower than the discharge voltage.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 5, 2015
    Inventors: Ashok V. Joshi, Sai Bhavaraju
  • Patent number: 8939435
    Abstract: A delivery apparatus includes a volatile agent source, a controller, and an emanator material. The volatile agent source stores a volume of a volatile agent such as a fragrance. The volatile agent source includes an outlet for delivery of the volatile agent from the volatile agent source. The controller controls a delivery rate of the volatile agent from the volatile agent source. The emanator material is disposed at approximately the outlet of the volatile agent source. The emanator material absorbs at least a portion of the volatile agent and maintains the volatile agent until the volatile agent evaporates into an ambient environment.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: January 27, 2015
    Assignee: Microlin, LLC
    Inventors: John Howard Gordon, Ashok V. Joshi
  • Publication number: 20150001066
    Abstract: A wipe for anti-microbial disinfecting includes a flexible substrate and an anti-microbial ion source integrated on the substrate. The flexible substrate is made entirely or in part of woven fiber cloth, non-woven fiber cloth, woven synthetic cloth, non-woven synthetic cloth, or natural fiber cloth. The anti-microbial ion source is configured to dissolve in an aqueous solution to form an anti-microbial solution. The flexible substrate is configured to absorb the anti-microbial solution for use in cleaning.
    Type: Application
    Filed: June 25, 2014
    Publication date: January 1, 2015
    Inventor: Ashok V. Joshi
  • Patent number: 8916123
    Abstract: Ammonia is synthesized using electrochemical and non-electrochemical reactions. The electrochemical reactions occur in an electrolytic cell having a lithium ion conductive membrane that divides the electrochemical cell into an anolyte compartment and a catholyte compartment. The catholyte compartment includes a porous cathode closely associated with the lithium ion conductive membrane. The overall electrochemical reaction is: 6LiOH+N2?Li3N (s)+3H2O+3/2O2. The nitrogen may be produced by a nitrogen generator. The non-electrochemical reaction involves reacting lithium nitride with water and/or steam as follows: Li3N (s)+3H2O?3LiOH+NH3 (g). The ammonia is vented and collected. The lithium hydroxide is preferably recycled and introduced into the anolyte compartment. The electrolytic cell is shut down prior to reacting the lithium nitride with water. The cathode is preferably dried prior to start up of the electrolytic cell and electrolyzing Li+ and N2 at the cathode.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: December 23, 2014
    Assignee: Ceramatec, Inc.
    Inventors: Ashok V. Joshi, Sai Bhavaraju
  • Publication number: 20140296774
    Abstract: Apparatus and methods to treat skin defects include a pump with reservoirs for a pressurization gas and a fluid. Upon activation, the pump generates a gas introduced into the gas reservoir, a movable wall of which displaces a movable wall of a fluid source, thus dispensing the fluid into the dressing to spread throughout irrespective of orientation of the dressing, maintaining a transport fluid (e.g. carrier) in the dressing and in contact with a skin defect being treated. The dressing may have a distribution network, and multiple members, dispensing the fluid into the dressing and in contact with a skin defect being treated.
    Type: Application
    Filed: June 16, 2014
    Publication date: October 2, 2014
    Inventors: Sai Bhavaraju, John Howard Gordon, Jeremy Heiser, Ashok V Joshi, Troy C Dayton
  • Publication number: 20140288484
    Abstract: An apparatus for administering a therapeutic is provided. In various embodiments, the apparatus includes a syringe having a barrel and a plunger and having an ozone generator associated therewith. The generator is initiated and a therapeutic gas is accumulated within the barrel, at which point it can be delivered from the barrel into a target site via a needle, thereby delivering therapeutic effects to that target site.
    Type: Application
    Filed: May 22, 2014
    Publication date: September 25, 2014
    Applicant: Ceramatec, Inc.
    Inventors: Ashok V. Joshi, James Steppan, Jesse Nachlas, Kieran Murphy
  • Patent number: 8777889
    Abstract: An apparatus for administering a therapeutic is provided. In various embodiments, the apparatus includes a syringe having a barrel and a plunger and having an ozone generator associated therewith. The generator is initiated and a therapeutic gas is accumulated within the barrel, at which point it can be delivered from the barrel into a target site via a needle, thereby delivering therapeutic effects to that target site.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: July 15, 2014
    Assignee: Ceramatec, Inc.
    Inventors: Ashok V Joshi, James Steppan, Jesse A Nachlas, Kieran P Murphy
  • Publication number: 20140190820
    Abstract: An apparatus for cleaning and/or disinfecting a surface or object is disclosed. In one embodiment, such an apparatus includes a container that is refillable with water. A sparingly soluble solid is provided in the container and is positioned to contact the water. The sparingly soluble solid slightly dissolves in the water to form a dilute solution that acts as a cleaning and/or disinfecting solution. The sparingly soluble solid is provided in a quantity sufficient to last several refills of the container.
    Type: Application
    Filed: January 4, 2013
    Publication date: July 10, 2014
    Inventors: Ashok V. Joshi, Sai Bhavaraju
  • Patent number: 8764965
    Abstract: Electrochemical processes to convert alkali sulfates into useful chemical products, such as syngas, alkali hydroxide, and sulfur are disclosed. An alkali sulfate is reacted with carbon to form carbon monoxide and alkali sulfide. In one embodiment, the alkali sulfide is dissolved in water and subjected to electrochemical reaction to form alkali hydroxide, hydrogen, and sulfur. In another embodiment, the alkali sulfide is reacted with iodine to form alkali iodide sulfur in a non-aqueous solvent, such as methyl alcohol. The alkali iodide is electrochemically reacted to form alkali hydroxide, hydrogen, and iodine. The iodine may be recycled to react with additional alkali sulfide. The hydrogen and carbon monoxide from both embodiments may be combined to form syngas. The alkali hydroxide from both embodiments may be recovered as a useful industrial chemical.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: July 1, 2014
    Assignee: Ceramatec,Inc.
    Inventor: Ashok V. Joshi
  • Publication number: 20140154766
    Abstract: A method that produces coupled radical products from biomass. The method involves obtaining a lipid or carboxylic acid material from the biomass. This material may be a carboxylic acid, an ester of a carboxylic acid, a triglyceride of a carboxylic acid, or a metal salt of a carboxylic acid, or any other fatty acid derivative. This lipid material or carboxylic acid material is converted into an alkali metal salt. The alkali metal salt is then used in an anolyte as part of an electrolytic cell. The electrolytic cell may include an alkali ion conducting membrane (such as a NaSICON membrane). When the cell is operated, the alkali metal salt of the carboxylic acid decarboxylates and forms radicals. Such radicals are then bonded to other radicals, thereby producing a coupled radical product such as a hydrocarbon. The produced hydrocarbon may be, for example, saturated, unsaturated, branched, or unbranched, depending upon the starting material.
    Type: Application
    Filed: December 5, 2013
    Publication date: June 5, 2014
    Applicant: Ceramatec, Inc.
    Inventors: Mukund Karanjikar, Sai Bhavaraju, Ashok V. Joshi, Pallavi Chitta, David Joel Hunt
  • Patent number: 8728295
    Abstract: A cell having an anode compartment and a cathode compartment is used to electrolyze an alkali metal polysulfide into an alkali metal. The cell includes an anode, wherein at least part of the anode is housed in the anode compartment. The cell also includes a quantity of anolyte housed within the anode compartment, the anolyte comprising an alkali metal polysulfide and a solvent. The cell includes a cathode, wherein at least part of the cathode is housed in the cathode compartment. A quantity of catholyte is housed within the cathode compartment. The cell operates at a temperature below the melting temperature of the alkali metal.
    Type: Grant
    Filed: October 9, 2009
    Date of Patent: May 20, 2014
    Assignee: Ceramatec, Inc.
    Inventors: John Howard Gordon, Ashok V. Joshi
  • Patent number: 8722221
    Abstract: A method for discharging a nickel-metal hydride storage battery comprising a positive electrode containing nickel hydroxide, a negative electrode containing a hydrogen absorbing alloy, an alkaline electrolyte, and an alkali conducting separator provided between the positive electrode and the negative electrode. The alkali conducting separator may be a solid alkali metal ion super ion conducting material, wherein the alkali metal is Na, K, or Li.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: May 13, 2014
    Assignee: Ceramatec, Inc.
    Inventors: Ashok V. Joshi, John Howard Gordon, Sai Bhavaraju, John Joseph Watkins
  • Publication number: 20140057174
    Abstract: An orientation independent delivery device. The delivery device includes a gas chamber, a delivery chamber, a gas cell, and a delivery aperture. The gas chamber includes a gas-side rigid portion and a gas-side flexible barrier. The gas-side flexible barrier is sealed to the gas-side rigid portion. The delivery chamber includes a delivery-side rigid portion and a delivery-side flexible barrier. The delivery-side flexible barrier is sealed to the delivery-side rigid portion and is oriented adjacent to the gas-side flexible barrier. The gas cell is coupled to the gas-side rigid portion of the gas chamber. The gas cell increases a gas pressure within the gas chamber to expand the gas-side flexible barrier. Expansion of the gas-side flexible barrier applies a compressive force to the delivery-side flexible barrier allowing a delivery material to escape from the delivery chamber.
    Type: Application
    Filed: August 26, 2013
    Publication date: February 27, 2014
    Applicant: Microlin, LLC
    Inventors: John Howard Gordon, Ashok V. Joshi