Patents by Inventor Ashray Vinayak GOGTE

Ashray Vinayak GOGTE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11941214
    Abstract: Touch sensor panels/screens can include metal mesh touch electrodes and routing in the active area. In some examples, the touch sensor panel/screen can include row electrodes and column electrodes disposed over the active area of the display. In some examples, the routing traces for the row electrodes and/or column electrodes can be disposed in a border region and some of the routing traces for the row electrodes and/or column electrodes can be disposed in the active area. In some examples, some row electrodes can be shaved down to create an offset from the edge of the active area to accommodate routing traces in the active area. In some examples, the row electrodes can be formed in a first metal mesh layer and some routing traces in the active area can be formed in a second metal mesh layer, different from the first metal mesh layer.
    Type: Grant
    Filed: August 9, 2022
    Date of Patent: March 26, 2024
    Assignee: Apple Inc.
    Inventors: Ashray Vinayak Gogte, Christophe Blondin
  • Publication number: 20240077981
    Abstract: In some examples, a touch screen includes a first region corresponding to a region of the touch screen without touch electrodes; a second region corresponding to a region of the touch screen with a first conductive material (e.g., solid metal) with a first density in a first conductive layer; and a third region corresponding to a region of the touch screen with a second conductive material (e.g., metal mesh) with a second density, lower than the first density, in the first conductive layer. In some examples, the second region circumscribes the first region, and the third region circumscribes the second region. Some touch electrodes include a portion of the first conductive material in the second region and a portion of the second conductive material in the third region. Such touch electrodes can be routed using the first conductive material in the first conductive layer around the first region.
    Type: Application
    Filed: August 30, 2023
    Publication date: March 7, 2024
    Inventors: Ashray Vinayak GOGTE, Yufei ZHAO, Christophe BLONDIN, Yoann J. LANET
  • Publication number: 20230297199
    Abstract: Touch electrode architecture techniques can be used to reduce or eliminate metal mesh within the one or more high-transmittance regions of a touch screen including one or more high-transmittance regions. In some examples, one or more optical devices can be integrated with a touch screen such that light associated with the one or more optical devices passes through one or more layers of the touch screen. In some such examples, to avoid degrading performance of the optical devices, one or more high-transmittance regions can be used. Additionally or alternatively, in some examples, the high-transmittance can be achieved using touch electrode architecture techniques that use transparent or semi-transparent materials instead of opaque metal mesh within the high-transmittance regions.
    Type: Application
    Filed: February 24, 2023
    Publication date: September 21, 2023
    Inventors: Christophe BLONDIN, Ashray Vinayak GOGTE, Ricardo A. PETERSON, Warren S. RIEUTORT-LOUIS, Yuchi CHE
  • Publication number: 20230284503
    Abstract: A display may have both a full pixel density region and a pixel removal region with a plurality of high-transmittance areas that overlap an optical sensor. Each high-transmittance area may be devoid of thin-film transistors and other display components. To improve transmission while maintaining satisfactory touch sensing performance, one or more segments of the touch sensor metal in the pixel removal region may have a reduced width relative to the touch sensor metal in the full pixel density region and/or one or more segments of the touch sensor metal in the pixel removal region may be omitted relative to the touch sensor metal in the full pixel density region. To mitigate a different appearance between the pixel removal region and the full pixel density region at off-axis viewing angles, the position of the touch sensor metal in the pixel removal region may be tuned.
    Type: Application
    Filed: June 16, 2022
    Publication date: September 7, 2023
    Inventors: Ricardo A Peterson, Abbas Jamshidi Roudbari, Ashray Vinayak Gogte, Christophe Blondin, Sebastian Knitter, Warren S Rieutort-Louis, Yuchi Che, Yurii Morozov, Matthew D Hollands, Chuang Qian, Michael H Lim, Matthew J Schwendeman, Kenny Kim, Tsung-Ting Tsai, Yue Qu
  • Patent number: 11751462
    Abstract: A display may have both a full pixel density region and a pixel removal region with a plurality of high-transmittance areas that overlap an optical sensor. Each high-transmittance area may be devoid of thin-film transistors and other display components. To improve transmission while maintaining satisfactory touch sensing performance, one or more segments of the touch sensor metal in the pixel removal region may have a reduced width relative to the touch sensor metal in the full pixel density region and/or one or more segments of the touch sensor metal in the pixel removal region may be omitted relative to the touch sensor metal in the full pixel density region. To mitigate a different appearance between the pixel removal region and the full pixel density region at off-axis viewing angles, the position of the touch sensor metal in the pixel removal region may be tuned.
    Type: Grant
    Filed: June 16, 2022
    Date of Patent: September 5, 2023
    Assignee: Apple Inc.
    Inventors: Ricardo A Peterson, Abbas Jamshidi Roudbari, Ashray Vinayak Gogte, Christophe Blondin, Sebastian Knitter, Warren S Rieutort-Louis, Yuchi Che, Yurii Morozov, Matthew D Hollands, Chuang Qian, Michael H Lim, Matthew J Schwendeman, Kenny Kim, Tsung-Ting Tsai, Yue Qu
  • Publication number: 20220382416
    Abstract: Touch sensor panels/screens can include metal mesh touch electrodes and routing in the active area. In some examples, the touch sensor panel/screen can include row electrodes and column electrodes disposed over the active area of the display. In some examples, the routing traces for the row electrodes and/or column electrodes can be disposed in a border region and some of the routing traces for the row electrodes and/or column electrodes can be disposed in the active area. In some examples, some row electrodes can be shaved down to create an offset from the edge of the active area to accommodate routing traces in the active area. In some examples, the row electrodes can be formed in a first metal mesh layer and some routing traces in the active area can be formed in a second metal mesh layer, different from the first metal mesh layer.
    Type: Application
    Filed: August 9, 2022
    Publication date: December 1, 2022
    Inventors: Ashray Vinayak GOGTE, Christophe BLONDIN
  • Patent number: 11449182
    Abstract: Touch sensor panels/screens can include metal mesh touch electrodes and routing in the active area. In some examples, the touch sensor panel/screen can include row electrodes and column electrodes disposed over the active area of the display. In some examples, the routing traces for the row electrodes and/or column electrodes can be disposed in a border region and some of the routing traces for the row electrodes and/or column electrodes can be disposed in the active area. In some examples, some row electrodes can be shaved down to create an offset from the edge of the active area to accommodate routing traces in the active area. In some examples, the row electrodes can be formed in a first metal mesh layer and some routing traces in the active area can be formed in a second metal mesh layer, different from the first metal mesh layer.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: September 20, 2022
    Assignee: Apple Inc.
    Inventors: Ashray Vinayak Gogte, Christophe Blondin
  • Publication number: 20210141491
    Abstract: Touch sensor panels/screens can include metal mesh touch electrodes and routing in the active area. In some examples, the touch sensor panel/screen can include row electrodes and column electrodes disposed over the active area of the display. In some examples, the routing traces for the row electrodes and/or column electrodes can be disposed in a border region and some of the routing traces for the row electrodes and/or column electrodes can be disposed in the active area. In some examples, some row electrodes can be shaved down to create an offset from the edge of the active area to accommodate routing traces in the active area. In some examples, the row electrodes can be formed in a first metal mesh layer and some routing traces in the active area can be formed in a second metal mesh layer, different from the first metal mesh layer.
    Type: Application
    Filed: October 9, 2020
    Publication date: May 13, 2021
    Inventors: Ashray Vinayak GOGTE, Christophe BLONDIN
  • Patent number: 10990229
    Abstract: A touch sensor panel is disclosed. In some examples, the touch sensor panel includes drive electrodes and sense electrodes, wherein the drive electrodes and sense electrodes form touch nodes. In some examples, touch nodes include differently-sized drive and/or sense electrodes, and changes to the size or quantity of reference or floating electrodes disposed within the drive and/or sense electrodes are used to substantially balance the areas of the drive and/or sense electrodes in a given touch node.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: April 27, 2021
    Assignee: Apple Inc.
    Inventors: Ashray Vinayak Gogte, Warren S. A. Rieutort-Louis, Alexandre Gourevitch, Christophe Blondin
  • Patent number: 10936135
    Abstract: A touch sensor panel is disclosed. In some examples, the touch sensor panel comprises a first layer including a plurality of drive lines including drive electrodes, wherein the drive lines are configured to be coupled to drive circuitry during touch sensing on the touch sensor panel. In some examples, the first layer includes a plurality of sense lines including sense electrodes, wherein the sense lines are configured to be coupled to sense circuitry during the touch sensing on the touch sensor panel. In some examples, the first layer includes a plurality of first shielding electrodes, wherein the first shielding electrodes are disposed between the drive electrodes and the sense electrodes. In some examples, the touch sensor panel comprises a second layer, different than the first layer, including one or more bridges electrically coupling at least two of the first shielding electrodes together.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: March 2, 2021
    Assignee: Apple Inc.
    Inventors: Alexandre Gourevitch, Christophe Blondin, Ashray Vinayak Gogte, Xiaoqi Zhou, Vipul Chawla, Robert Leo Sheridan
  • Publication number: 20200042120
    Abstract: A touch sensor panel is disclosed. In some examples, the touch sensor panel includes drive electrodes and sense electrodes, wherein the drive electrodes and sense electrodes form touch nodes. In some examples, touch nodes include differently-sized drive and/or sense electrodes, and changes to the size or quantity of reference or floating electrodes disposed within the drive and/or sense electrodes are used to substantially balance the areas of the drive and/or sense electrodes in a given touch node.
    Type: Application
    Filed: August 2, 2019
    Publication date: February 6, 2020
    Inventors: Ashray Vinayak GOGTE, Warren S. A. RIEUTORT-LOUIS, Alexandre GOUREVITCH, Christophe BLONDIN
  • Publication number: 20200026393
    Abstract: A touch sensor panel is disclosed. In some examples, the touch sensor panel comprises a first layer including a plurality of drive lines including drive electrodes, wherein the drive lines are configured to be coupled to drive circuitry during touch sensing on the touch sensor panel. In some examples, the first layer includes a plurality of sense lines including sense electrodes, wherein the sense lines are configured to be coupled to sense circuitry during the touch sensing on the touch sensor panel. In some examples, the first layer includes a plurality of first shielding electrodes, wherein the first shielding electrodes are disposed between the drive electrodes and the sense electrodes. In some examples, the touch sensor panel comprises a second layer, different than the first layer, including one or more bridges electrically coupling at least two of the first shielding electrodes together.
    Type: Application
    Filed: July 1, 2019
    Publication date: January 23, 2020
    Inventors: Alexandre GOUREVITCH, Christophe BLONDIN, Ashray Vinayak GOGTE, Xiaoqi ZHOU, Vipul CHAWLA, Robert Leo SHERIDAN
  • Patent number: 10444918
    Abstract: Touch sensor configurations for reducing electrostatic discharge events in the border area of a touch sensor panel is disclosed. Touch sensors (e.g., electrodes formed on the cover material and/or the opaque mask) can be susceptible to certain events such as arcing and discharge/joule heating, which may negatively affect touch sensor performance. Examples of the disclosure can include increasing the trace width, spacing, and/or thickness in the border area relative to the trace width, spacing, and/or thickness in the visible/active area along one or more sides of the touch sensor panel. In some examples, touch electrodes can be located exclusively in the visible/active areas along one or more sides of the touch sensor panel, while dummy sections can be included in both the border and visible/active areas. Additionally or alternatively, one or more gaps between adjacent touch electrodes in the border area or serpentine routing can be included.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: October 15, 2019
    Assignee: Apple Inc.
    Inventors: Wencong Zhu, Albert Lin, Alexander A. Penn, Ashray Vinayak Gogte, Chun-Hao Tung, Hao Zhang, Hui Zhou, John Z. Zhong, Steven P. Hotelling, Sudip Mondal, Sumant Ranganathan, Sunggu Kang, Ramachandran Chundru, Viswa B. Pilla
  • Publication number: 20180067584
    Abstract: Touch sensor configurations for reducing electrostatic discharge events in the border area of a touch sensor panel is disclosed. Touch sensors (e.g., electrodes formed on the cover material and/or the opaque mask) can be susceptible to certain events such as arcing and discharge/joule heating, which may negatively affect touch sensor performance. Examples of the disclosure can include increasing the trace width, spacing, and/or thickness in the border area relative to the trace width, spacing, and/or thickness in the visible/active area along one or more sides of the touch sensor panel. In some examples, touch electrodes can be located exclusively in the visible/active areas along one or more sides of the touch sensor panel, while dummy sections can be included in both the border and visible/active areas. Additionally or alternatively, one or more gaps between adjacent touch electrodes in the border area or serpentine routing can be included.
    Type: Application
    Filed: August 30, 2017
    Publication date: March 8, 2018
    Inventors: Wencong ZHU, Albert LIN, Alexander A. PENN, Ashray Vinayak GOGTE, Chun-Hao TUNG, Hao ZHANG, Hui ZHOU, John Z. ZHONG, Steven P. HOTELLING, Sudip MONDAL, Sumant RANGANATHAN, Sunggu KANG