Patents by Inventor Ashutosh Baheti

Ashutosh Baheti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220175314
    Abstract: A system includes a millimeter-wave radar sensor disposed on a circuit board, a plurality of antennas coupled to the millimeter-wave radar sensor and disposed on the circuit board, and a processing circuit coupled to the millimeter-wave radar sensor and disposed on the circuit board. The processing circuit is configured to determine vital signal information based on output from the millimeter-wave radar sensor.
    Type: Application
    Filed: February 25, 2022
    Publication date: June 9, 2022
    Inventors: Ashutosh Baheti, Reinhard-Wolfgang Jungmaier, Avik Santra, Saverio Trotta
  • Patent number: 11355838
    Abstract: A packaged radar includes laminate layers, a ground plane associated with at least one of the laminate layers, a transmit antenna and a receive antenna associated with at least one of the laminate layers, and an electromagnetic band gap structure between the transmit antenna and the receive antenna for isolating the transmit antenna and the receive antenna, the electromagnetic band gap structure including elementary cells forming adjacent columns each coupled to the ground plane, and each elementary cell including a conductive planar element and a columnar element coupled to the conductive planar element.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: June 7, 2022
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Ashutosh Baheti, Marwa Abdel-Aziz, Mustafa Dogan, Muhammad Tayyab Qureshi, Saverio Trotta, Maciej Wojnowski
  • Patent number: 11346936
    Abstract: A method of measuring vital signals using a millimeter-wave radar sensor system includes performing a first set of radar measurements using a millimeter-wave radar sensor to produce a first set of radar data; determining a first set of range gate measurements from the first set of radar data; determining high response range gates from the first set of range gate measurements; and extracting vital signal information from the high response range gates.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: May 31, 2022
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Ashutosh Baheti, Reinhard-Wolfgang Jungmaier, Avik Santra, Saverio Trotta
  • Patent number: 11336026
    Abstract: A radio frequency (RF) system includes an RF integrated circuit (IC) die, and an antenna coupled to the RF IC die. The RF system further includes a reflector layer over the RF IC die, the reflector layer extending over at least a portion of the antenna, a combination of the antenna and the reflector layer having a radiation pattern that comprises a main lobe in a first direction parallel to a top surface of the reflector layer.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: May 17, 2022
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Saverio Trotta, Ashutosh Baheti
  • Publication number: 20220148951
    Abstract: A semiconductor device includes a semiconductor chip and a redistribution layer on a first side of the semiconductor chip. The redistribution layer is electrically coupled to the semiconductor chip. The semiconductor device includes a dielectric layer and an antenna on the dielectric layer. The dielectric layer is between the antenna and the semiconductor chip.
    Type: Application
    Filed: December 7, 2021
    Publication date: May 12, 2022
    Applicant: Infineon Technologies AG
    Inventors: Ngoc-Hoa Huynh, Franz-Xaver Muehlbauer, Claus Waechter, Veronika Theyerl, Dominic Maier, Thomas Kilger, Saverio Trotta, Ashutosh Baheti, Georg Meyer-Berg, Maciej Wojnowski
  • Patent number: 11278241
    Abstract: A system includes a millimeter-wave radar sensor disposed on a circuit board, a plurality of antennas coupled to the millimeter-wave radar sensor and disposed on the circuit board, and a processing circuit coupled to the millimeter-wave radar sensor and disposed on the circuit board. The processing circuit is configured to determine vital signal information based on output from the millimeter-wave radar sensor.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: March 22, 2022
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Ashutosh Baheti, Reinhard-Wolfgang Jungmaier, Avik Santra, Saverio Trotta
  • Publication number: 20220085484
    Abstract: A semiconductor system includes a semiconductor chip comprising a RF circuit, a buffer layer over the RF circuit and a plurality of bumps over the buffer layer, wherein the plurality of bumps comprising at least one functional bump electrically connected to the RF circuit, and at least one dummy bump which is maintained at a distance from the RF circuit and prevented from being electrically connected to the RF circuit by the buffer layer, a conductive layer disposed over the semiconductor chip and coupled to the plurality of bumps through a plurality of vias, a feedline structure disposed over the conductive layer, wherein the feedline structure is electrically coupled to the RF circuit, and a plurality of antennas disposed over the feedline structure, wherein at least one antenna of the plurality of antennas is coupled to the RF circuit through the feedline structure.
    Type: Application
    Filed: September 16, 2020
    Publication date: March 17, 2022
    Inventors: Eung San Cho, Ashutosh Baheti, Saverio Trotta
  • Publication number: 20220077592
    Abstract: An electronic device includes a housing, an electrically conductive layer and millimeter-wave (mmw) circuitry configured to emit a mmw signal. The mmw circuitry is arranged in the housing and on a first side of the electrically conductive layer. The housing comprises at least one portion configured as a dielectric lens to refract the mmw signal at least partially outside the housing towards a second side opposite to the first side of the electrically conductive layer.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 10, 2022
    Inventors: Nadine Pfuhl, Marwa Abdel-Aziz, Ashutosh Baheti, Saverio Trotta
  • Publication number: 20220059925
    Abstract: A semiconductor device comprises a semiconductor chip comprising a radio frequency (RF) circuit, a feedline structure coupled to the RF circuit, and an antenna structure comprising a main body stretching along a direction orthogonal to at least one side of a front side and a backside of the semiconductor device, wherein the antenna structure is coupled to the RF circuit through the feedline structure.
    Type: Application
    Filed: August 19, 2020
    Publication date: February 24, 2022
    Inventors: Eung San Cho, Ashutosh Baheti, Saverio Trotta
  • Patent number: 11258162
    Abstract: A semiconductor system includes a semiconductor chip comprising a RF circuit, a buffer layer over the RF circuit and a plurality of bumps over the buffer layer, wherein the plurality of bumps comprising at least one functional bump electrically connected to the RF circuit, and at least one dummy bump which is maintained at a distance from the RF circuit and prevented from being electrically connected to the RF circuit by the buffer layer, a conductive layer disposed over the semiconductor chip and coupled to the plurality of bumps through a plurality of vias, a feedline structure disposed over the conductive layer, wherein the feedline structure is electrically coupled to the RF circuit, and a plurality of antennas disposed over the feedline structure, wherein at least one antenna of the plurality of antennas is coupled to the RF circuit through the feedline structure.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: February 22, 2022
    Assignee: Infineon Technologies AG
    Inventors: Eung San Cho, Ashutosh Baheti, Saverio Trotta
  • Publication number: 20220029271
    Abstract: A semiconductor device includes a semiconductor die comprising a radio frequency (RF) circuit, a first dielectric layer disposed over a first surface of the semiconductor die, an antenna layer disposed over a surface of the first dielectric layer, and an antenna feeding structure coupling the antenna layer to the RF circuit of the semiconductor die, wherein the semiconductor die comprises a via, and the antenna feeding structure comprises a first portion arranged within the opening of the semiconductor die and extending to the first surface of the semiconductor die, and a second portion arranged through the first dielectric layer.
    Type: Application
    Filed: July 27, 2020
    Publication date: January 27, 2022
    Inventors: Eung San Cho, Ashutosh Baheti, Saverio Trotta
  • Patent number: 11204411
    Abstract: A method of operating a radar system includes transmitting a plurality of transmitted radio frequency (RF) signals by a plurality of directional antennas. The plurality of directional antennas is disposed on a planar surface of a substrate. Each of the plurality of antennas is in a fixed orientation and position on the planar surface. A respective individual coverage of each of the plurality of directional antennas is less than 360°. A combined coverage of the plurality of transmitted RF signals completely covers a 360° region surrounding the radar system. The method also includes receiving a reflected RF signal by a directional antenna of the plurality of directional antennas.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: December 21, 2021
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Reinhard-Wolfgang Jungmaier, Saverio Trotta, Ashutosh Baheti, Jagjit Singh Bal
  • Patent number: 11195787
    Abstract: A semiconductor device includes a semiconductor chip and a redistribution layer on a first side of the semiconductor chip. The redistribution layer is electrically coupled to the semiconductor chip. The semiconductor device includes a dielectric layer and an antenna on the dielectric layer. The dielectric layer is between the antenna and the semiconductor chip.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: December 7, 2021
    Assignee: Infineon Technologies AG
    Inventors: Ngoc-Hoa Huynh, Franz-Xaver Muehlbauer, Claus Waechter, Veronika Huber, Dominic Maier, Thomas Kilger, Saverio Trotta, Ashutosh Baheti, Georg Meyer-Berg, Maciej Wojnowski
  • Publication number: 20210341536
    Abstract: A test assembly for testing an antenna-in-package (AiP) device includes a socket over a circuit board, where the socket includes an opening for receiving the AiP device; a plunger configured to move along sidewalls of the opening, where during testing of the AiP device, the plunger is configured to cause the AiP device to be pressed towards the circuit board such that the AiP device is operatively coupled to the circuit board via input/output connections of the AiP device and of the circuit board; and a loadboard disposed within the socket and between the plunger and the AiP device, where the loadboard includes a coupling structure configured to be electromagnetically coupled to a transmit antenna and to a receive antenna of the AiP device, so that testing signals transmitted by the transmit antenna are conveyed to the receive antenna externally relative to the AiP device through the coupling structure.
    Type: Application
    Filed: July 16, 2021
    Publication date: November 4, 2021
    Inventors: Saverio Trotta, Ashutosh Baheti, Reinhard-Wolfgang Jungmaier, Dennis Noppeney
  • Publication number: 20210319206
    Abstract: In an embodiment, a method for authenticating a user of a car includes: transmitting a plurality of radiation pulses through a predetermined portion of a surface of the car towards a portion of a hand of the user using a millimeter-wave radar; receiving a reflected signal from the portion of the hand using the millimeter-wave radar; generating a fingerprint signature based on the reflected signal; comparing the fingerprint signature to a database of authorized fingerprint signatures; and authorizing the user based on whether the fingerprint signature matches an authorized fingerprint signature of the database of authorized fingerprint signatures.
    Type: Application
    Filed: June 24, 2021
    Publication date: October 14, 2021
    Inventors: Neha Baheti, Ashutosh Baheti, Avik Santra
  • Publication number: 20210257716
    Abstract: A semiconductor device includes: a dielectric substrate; an integrated circuit (IC) die disposed inside an opening of the dielectric substrate, where the IC die is configured to transmit or receive radio frequency (RF) signals; a dielectric material in the opening of the dielectric substrate and around the IC die; a redistribution structure along a first side of the dielectric substrate, where a first conductive feature of the redistribution structure is electrically coupled to the IC die; a second conductive feature along a second side of the dielectric substrate opposing the first side; a via extending through the dielectric substrate, where the via electrically couples the first conductive feature and the second conductive feature; and an antenna at the second side of the dielectric substrate, where the second conductive feature is electrically or electromagnetically coupled to the antenna.
    Type: Application
    Filed: February 13, 2020
    Publication date: August 19, 2021
    Inventors: Ashutosh Baheti, EungSan Cho, Saverio Trotta
  • Patent number: 11092643
    Abstract: A test assembly for testing an antenna-in-package (AiP) device includes a socket over a circuit board, where the socket includes an opening for receiving the AiP device; a plunger configured to move along sidewalls of the opening, where during testing of the AiP device, the plunger is configured to cause the AiP device to be pressed towards the circuit board such that the AiP device is operatively coupled to the circuit board via input/output connections of the AiP device and of the circuit board; and a loadboard disposed within the socket and between the plunger and the AiP device, where the loadboard includes a coupling structure configured to be electromagnetically coupled to a transmit antenna and to a receive antenna of the AiP device, so that testing signals transmitted by the transmit antenna are conveyed to the receive antenna externally relative to the AiP device through the coupling structure.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: August 17, 2021
    Assignee: Infineon Technologies AG
    Inventors: Saverio Trotta, Ashutosh Baheti, Reinhard-Wolfgang Jungmaier, Dennis Noppeney
  • Patent number: 11087115
    Abstract: In an embodiment, a method for authenticating a user of a car includes: transmitting a plurality of radiation pulses through a predetermined portion of a surface of the car towards a portion of a hand of the user using a millimeter-wave radar; receiving a reflected signal from the portion of the hand using the millimeter-wave radar; generating a fingerprint signature based on the reflected signal; comparing the fingerprint signature to a database of authorized fingerprint signatures; and authorizing the user based on whether the fingerprint signature matches an authorized fingerprint signature of the database of authorized fingerprint signatures.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: August 10, 2021
    Assignee: Infineon Technologies AG
    Inventors: Neha Baheti, Ashutosh Baheti, Avik Santra
  • Publication number: 20210165072
    Abstract: A method of forming a radar system includes forming a first receive antenna and a first ground plane region by patterning a first conductive layer on a first surface of a first laminate layer of a radar package, forming a transmit antenna and a second ground plane region by patterning a second conductive layer on a second surface of the first laminate layer, forming a second laminate layer of the radar package over the second conductive layer, forming a third conductive layer over the second laminate layer, forming a second receive antenna by patterning the third conductive layer, and attaching a radio frequency integrated circuit chip to the radar package. The radio frequency integrated circuit chip is coupled to the transmit antenna, the first receive antenna, and the second receive antenna. The second surface is opposite the first surface.
    Type: Application
    Filed: February 12, 2021
    Publication date: June 3, 2021
    Inventors: Saverio Trotta, Reinhard-Wolfgang Jungmaier, Adrian Mikolajczak, Ashutosh Baheti
  • Publication number: 20210158138
    Abstract: A method for operating a distributed neural network having a plurality of intelligent devices and a server includes: generating, by a first intelligent device of the plurality of intelligent devices, a first output using a first neural network model running on the first intelligent device and using a first input vector to the first neural network model; outputting, by the first intelligent device, the first output; receiving, by the first intelligent device, a gesture feedback on the first output from a user; determining, by the first intelligent device, a user rating of the first output from the gesture feedback; labeling, by the first intelligent device, the first input vector with a first label in accordance with the user rating; and training, by the first intelligent device, the first neural network model using the first input vector and the first label.
    Type: Application
    Filed: November 21, 2019
    Publication date: May 27, 2021
    Inventors: Souvik Hazra, Ashutosh Baheti, Avik Santra