Patents by Inventor Ashutosh Chaturvedi

Ashutosh Chaturvedi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11960386
    Abstract: A method and system for automated continuous validation for regulatory compliance of CS with dynamic component. On identification of learning in the CS, a User Acceptance Testing (UAT) is performed using automated test cases of varying types in accordance with what-if scenarios and synthetic data generated using a unique approach. Thereafter, a base validation testing of the CS is performed with clean data (positive scenarios of outcome of the CS) and dirty data (negative scenarios) by conducting repeatability, stability (consistency) and reliability checks. The base validation testing is then followed by learning saturation testing on only if the dynamic component is validated, is rolled out in production environment else is rolled back to the earlier version.
    Type: Grant
    Filed: August 29, 2022
    Date of Patent: April 16, 2024
    Assignee: Tata Consultancy Services Limited
    Inventors: Ashish Omprakash Indani, Divya Vasudevan, Devraj Goulikar, Prita Venkateswaran, Ashutosh Pachisia, Prashant Chaturvedi, Rohit Kadam, Vimal Chaubey
  • Patent number: 11944821
    Abstract: A computer-implemented method for determining the volume of activation of neural tissue. In one embodiment, the method uses one or more parametric equations that define a volume of activation, wherein the parameters for the one or more parametric equations are given as a function of an input vector that includes stimulation parameters. After receiving input data that includes values for the stimulation parameters and defining the input vector using the input data, the input vector is applied to the function to obtain the parameters for the one or more parametric equations. The parametric equation is solved to obtain a calculated volume of activation.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: April 2, 2024
    Assignee: The Cleveland Clinic Foundation
    Inventors: J. Luis Lujan, Ashutosh Chaturvedi, Cameron McIntyre
  • Patent number: 11941857
    Abstract: An illustrative method includes accessing, by a computing device, a model simulating light scattered by a simulated target, the model comprising a plurality of parameters. The method further includes generating, by the computing device, a set of possible histogram data using the model with a plurality of values for the parameters. The method further includes determining, by the computing device, a set of components that represent the set of possible histogram data, the set of components having a reduced dimensionality from the set of possible histogram data.
    Type: Grant
    Filed: May 19, 2021
    Date of Patent: March 26, 2024
    Assignee: HI LLC
    Inventors: Hamid Dehghani, Ryan Field, Julian Kates-Harbeck, Viktoria Rojkova, Ashutosh Chaturvedi
  • Patent number: 11857316
    Abstract: In a non-invasive optical detection system and method, sample light is delivered into a scattering medium. A first portion of the sample light passing through a volume of interest exits the scattering medium as signal light, and a second portion of the sample light passing through a volume of non-interest exits the scattering medium as background light that is combined with the signal light to create a sample light pattern. Reference light is combined with the sample light pattern to create an interference light pattern having a holographic beat component. Ultrasound is emitted into the volume of non-interest in a manner that decorrelates the background light of the sample light pattern from the holographic beat component. The holographic beat component is detected during the measurement period. An optical parameter of the volume of interest is determined based on the detected holographic beat component.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: January 2, 2024
    Assignee: HI LLC
    Inventors: Jamu Alford, Ashutosh Chaturvedi, Adam Marblestone
  • Patent number: 11648398
    Abstract: In some examples, a processor of a system evaluates a therapy program based on a score determined based on a volume of tissue expected to be activated (“VTA”) by therapy delivery according to the therapy program. The score may be determined using an efficacy map comprising a plurality of voxels that are each assigned a value. In some examples, the efficacy map is selected from a plurality of stored efficacy maps based on a patient condition, one or more patient symptoms, or both the patient condition and one or more patient symptoms. In addition, in some examples, voxels of the efficacy map are assigned respective values that are associated with a clinical rating scale.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: May 16, 2023
    Assignee: Medtronic, Inc.
    Inventors: Ashutosh Chaturvedi, Siddharth Dani, Timothy J. Denison, William F. Kaemmerer, Shahram Malekkhosravi, Eric J. Panken, Brandon Zingsheim
  • Publication number: 20220257929
    Abstract: A sleeve for a medical lead includes a tubular body having a first open end and a second open end, a tubular wall extending between the first and second ends and defining a hollow center, and a longitudinal axis extending through the hollow center. A first pocket is disposed in the tubular wall and having a curved transverse cross section and a first access opening at the first open end of the tubular body. A medical lead system includes a medical lead and the sleeve configured to slide over the medical lead and be adjacent to the electrode region.
    Type: Application
    Filed: May 2, 2022
    Publication date: August 18, 2022
    Inventors: Jiashu Li, Patrick Helm, Sean P. Skubitz, Ashutosh Chaturvedi
  • Patent number: 11318297
    Abstract: A medical lead includes a main body having a length extending from a proximal end to a distal end, a longitudinal axis parallel to the length, and a proximal portion adjacent to the proximal end and a distal portion adjacent to the distal end; a plurality of electrodes defining an electrode region; and an imaging marker positioned between the electrode region and the proximal end and separated from the electrode region by a distance in an axial direction. The imaging marker may include one or more marker segments. The imaging marker may be disposed in a pocket of a sleeve at least partially surrounding the main body and comprising one or more pockets for receiving the imaging marker. The medical lead may be operatively connected to an implantable medical device.
    Type: Grant
    Filed: August 9, 2018
    Date of Patent: May 3, 2022
    Assignee: Medtronic, Inc.
    Inventors: Jiashu Li, Patrick Helm, Sean P. Skubitz, Ashutosh Chaturvedi
  • Publication number: 20210374458
    Abstract: An illustrative method includes accessing, by a computing device, a model simulating light scattered by a simulated target, the model comprising a plurality of parameters. The method further includes generating, by the computing device, a set of possible histogram data using the model with a plurality of values for the parameters. The method further includes determining, by the computing device, a set of components that represent the set of possible histogram data, the set of components having a reduced dimensionality from the set of possible histogram data.
    Type: Application
    Filed: May 19, 2021
    Publication date: December 2, 2021
    Inventors: Hamid Dehghani, Ryan Field, Julian Kates-Harbeck, Viktoria Rojkova, Ashutosh Chaturvedi
  • Publication number: 20210220656
    Abstract: A computer-implemented method for determining the volume of activation of neural tissue. In one embodiment, the method uses one or more parametric equations that define a volume of activation, wherein the parameters for the one or more parametric equations are given as a function of an input vector that includes stimulation parameters. After receiving input data that includes values for the stimulation parameters and defining the input vector using the input data, the input vector is applied to the function to obtain the parameters for the one or more parametric equations. The parametric equation is solved to obtain a calculated volume of activation.
    Type: Application
    Filed: March 16, 2021
    Publication date: July 22, 2021
    Inventors: J. Luis Lujan, Ashutosh Chaturvedi, Cameron McIntyre
  • Patent number: 11040205
    Abstract: In some examples, a processor of a system evaluates a therapy program based on a score determined based on a volume of tissue expected to be activated (“VTA”) by therapy delivery according to the therapy program. The score may be determined using a three-dimensional (3D) grid comprising a plurality of voxels that are each assigned a value. The processor may register the VTA with the 3D grid and determine the score for the therapy program based on the values assigned to voxels with which the VTA overlaps. One or more therapy programs for electrical stimulation therapy (e.g., deep brain stimulation) may be selected based on the scores determined based on the 3D grid.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: June 22, 2021
    Assignee: MEDTRONIC, INC.
    Inventors: William F. Kaemmerer, Maciej T. Lazarewicz, Gabriela C. Molnar, Ashutosh Chaturvedi
  • Patent number: 10981013
    Abstract: A computer-implemented method for determining the volume of activation of neural tissue. In one embodiment, the method uses one or more parametric equations that define a volume of activation, wherein the parameters for the one or more parametric equations are given as a function of an input vector that includes stimulation parameters. After receiving input data that includes values for the stimulation parameters and defining the input vector using the input data, the input vector is applied to the function to obtain the parameters for the one or more parametric equations. The parametric equation is solved to obtain a calculated volume of activation.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: April 20, 2021
    Assignee: The Cleveland Clinic Foundation
    Inventors: J. Luis Lujan, Ashutosh Chaturvedi, Cameron McIntyre
  • Publication number: 20200230397
    Abstract: A medical lead includes a main body having a length extending from a proximal end to a distal end, a longitudinal axis parallel to the length, and a proximal portion adjacent to the proximal end and a distal portion adjacent to the distal end; a plurality of electrodes defining an electrode region; and an imaging marker positioned between the electrode region and the proximal end and separated from the electrode region by a distance in an axial direction. The imaging marker may include one or more marker segments. The imaging marker may be disposed in a pocket of a sleeve at least partially surrounding the main body and comprising one or more pockets for receiving the imaging marker. The medical lead may be operatively connected to an implantable medical device.
    Type: Application
    Filed: August 9, 2018
    Publication date: July 23, 2020
    Inventors: Jiashu Li, Patrick Helm, Sean P. Skubitz, Ashutosh Chaturvedi
  • Publication number: 20200164212
    Abstract: In some examples, a processor of a system evaluates a therapy program based on a score determined based on a volume of tissue expected to be activated (“VTA”) by therapy delivery according to the therapy program. The score may be determined using an efficacy map comprising a plurality of voxels that are each assigned a value. In some examples, the efficacy map is selected from a plurality of stored efficacy maps based on a patient condition, one or more patient symptoms, or both the patient condition and one or more patient symptoms. In addition, in some examples, voxels of the efficacy map are assigned respective values that are associated with a clinical rating scale.
    Type: Application
    Filed: January 28, 2020
    Publication date: May 28, 2020
    Inventors: Ashutosh Chaturvedi, Siddharth Dani, Timothy J. Denison, William F. Kaemmerer, Shahram Malekkhosravi, Eric J. Panken, Brandon Zingsheim
  • Patent number: 10583293
    Abstract: In some examples, a processor of a system evaluates a therapy program based on a score determined based on a volume of tissue expected to be activated (“VTA”) by therapy delivery according to the therapy program. The score may be determined using an efficacy map comprising a plurality of voxels that are each assigned a value. In some examples, the efficacy map is selected from a plurality of stored efficacy maps based on a patient condition, one or more patient symptoms, or both the patient condition and one or more patient symptoms. In addition, in some examples, voxels of the efficacy map are assigned respective values that are associated with a clinical rating scale.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: March 10, 2020
    Assignee: Medtronic, Inc.
    Inventors: Ashutosh Chaturvedi, Siddharth Dani, Timothy J. Denison, William F. Kaemmerer, Shahram Malekkhosravi, Eric J. Panken, Brandon Zingsheim
  • Publication number: 20190336057
    Abstract: In a non-invasive optical detection system and method, sample light is delivered into a scattering medium. A first portion of the sample light passing through a volume of interest exits the scattering medium as signal light, and a second portion of the sample light passing through a volume of non-interest exits the scattering medium as background light that is combined with the signal light to create a sample light pattern. Reference light is combined with the sample light pattern to create an interference light pattern having a holographic beat component. Ultrasound is emitted into the volume of non-interest in a manner that decorrelates the background light of the sample light pattern from the holographic beat component. The holographic beat component is detected during the measurement period. An optical parameter of the volume of interest is determined based on the detected holographic beat component.
    Type: Application
    Filed: April 12, 2019
    Publication date: November 7, 2019
    Applicant: HI LLC
    Inventors: Jamu Alford, Ashutosh Chaturvedi, Adam Marblestone
  • Publication number: 20190287020
    Abstract: A computer-implemented method for determining the volume of activation of neural tissue. In one embodiment, the method uses one or more parametric equations that define a volume of activation, wherein the parameters for the one or more parametric equations are given as a function of an input vector that includes stimulation parameters. After receiving input data that includes values for the stimulation parameters and defining the input vector using the input data, the input vector is applied to the function to obtain the parameters for the one or more parametric equations. The parametric equation is solved to obtain a calculated volume of activation.
    Type: Application
    Filed: June 4, 2019
    Publication date: September 19, 2019
    Inventors: J. Luis Lujan, Ashutosh Chaturvedi, Cameron McIntyre
  • Patent number: 10360511
    Abstract: A computer-implemented method for determining the volume of activation of neural tissue. In one embodiment, the method uses one or more parametric equations that define a volume of activation, wherein the parameters for the one or more parametric equations are given as a function of an input vector that includes stimulation parameters. After receiving input data that includes values for the stimulation parameters and defining the input vector using the input data, the input vector is applied to the function to obtain the parameters for the one or more parametric equations. The parametric equation is solved to obtain a calculated volume of activation.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 23, 2019
    Assignee: THE CLEVELAND CLINIC FOUNDATION
    Inventors: J. Luis Lujan, Ashutosh Chaturvedi, Cameron McIntyre
  • Publication number: 20190111266
    Abstract: In some examples, a processor of a system evaluates a therapy program based on a score determined based on a volume of tissue expected to be activated (“VTA”) by therapy delivery according to the therapy program. The score may be determined using a three-dimensional (3D) grid comprising a plurality of voxels that are each assigned a value. The processor may register the VTA with the 3D grid and determine the score for the therapy program based on the values assigned to voxels with which the VTA overlaps. One or more therapy programs for electrical stimulation therapy (e.g., deep brain stimulation) may be selected based on the scores determined based on the 3D grid.
    Type: Application
    Filed: December 21, 2018
    Publication date: April 18, 2019
    Inventors: William F. Kaemmerer, Maciej T. Lazarewicz, Gabriela C. Molnar, Ashutosh Chaturvedi
  • Patent number: 10188863
    Abstract: In some examples, a processor of a system evaluates a therapy program based on a score determined based on a volume of tissue expected to be activated (“VTA”) by therapy delivery according to the therapy program. The score may be determined using a three-dimensional (3D) grid comprising a plurality of voxels that are each assigned a value. The processor may register the VTA with the 3D grid and determine the score for the therapy program based on the values assigned to voxels with which the VTA overlaps. One or more therapy programs for electrical stimulation therapy (e.g., deep brain stimulation) may be selected based on the scores determined based on the 3D grid.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: January 29, 2019
    Assignee: Medtronic, Inc.
    Inventors: William F. Kaemmerer, Maciej T. Lazarewicz, Gabriela C. Molnar, Ashutosh Chaturvedi
  • Patent number: 10159836
    Abstract: Example apparatus and methods plan and control neuro-modulation of a distributed multi-region network in a brain. A location for a deep brain stimulation (DBS) electrode that participates in activating a combination of white matter pathways associated with the network is selected. The location is selected based on a pre-implantation image of the brain and a probabilistic activation model of the network. An initial stimulation parameter for DBS to be applied through the DBS electrode is selected based on a post-implantation image of the brain and the probabilistic activation model of the network. A modified stimulation parameter for DBS being applied through the DBS electrode is selected based on the initial stimulation parameter, a local field potential measured in the distributed multi-region network in response to DBS applied using the initial stimulation parameter, the probabilistic activation model of the distributed multi-region network, and the post-implantation image of the brain.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: December 25, 2018
    Assignee: Case Western Reserve University
    Inventors: Cameron McIntyre, Patricio Riva-Posse, Ki Sueng Choi, Ashutosh Chaturvedi, Helen Mayberg, Michele Tagliati, Tyler Cheung