Patents by Inventor Ashutosh Gajanan Rege

Ashutosh Gajanan Rege has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11809178
    Abstract: A method for autonomously operating a driverless vehicle along a path between a first geographic location and a destination may include receiving communication signals from the driverless vehicle. The communication signals may include sensor data from the driverless vehicle and data indicating occurrence of an event associated with the path. The communication signals may also include data indicating that a confidence level associated with the path is less than a threshold confidence level due to the event. The method may also include determining, via a teleoperations system, a level of guidance to provide the driverless vehicle based on data associated with the communication signals, and transmitting teleoperations signals to the driverless vehicle. The teleoperations signals may include guidance to operate the driverless vehicle according to the determined level of guidance, so that a vehicle controller maneuvers the driverless vehicle to avoid, travel around, or pass through the event.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: November 7, 2023
    Assignee: Zoox, Inc.
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Timothy Caldwell, Marin Kobilarov, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Patent number: 11734473
    Abstract: Techniques for determining an error model based on vehicle data and ground truth data are discussed herein. To determine whether a complex system (which may be not capable of being inspected) is able to operate safely, various operating regimes (scenarios) can be identified based on operating data. To provide safe operation of such a system, an error model can be determined that can provide a probability associated with perception data and a vehicle can determine a trajectory based on the probability of an error associated with the perception data.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: August 22, 2023
    Assignee: Zoox, Inc.
    Inventors: Sai Anurag Modalavalasa, Gerrit Bagschik, Andrew Scott Crego, Antoine Ghislain Deux, Rodin Lyasoff, James William Vaisey Philbin, Ashutosh Gajanan Rege, Andreas Christian Reschka, Marc Wimmershoff
  • Patent number: 11625513
    Abstract: Techniques for determining a safety metric associated with a vehicle controller are discussed herein. To determine whether a complex system (which may be uninspectable) is able to operate safely, various operating regimes (scenarios) can be identified based on operating data and associated with a scenario parameter to be adjusted. To validate safe operation of such a system, a scenario may be identified for inspection. Error metrics of a subsystem of the system can be quantified. The error metrics, in addition to stochastic errors of other systems/subsystems can be introduced to the scenario. The scenario parameter may also be perturbed. Any multitude of such perturbations can be instantiated in a simulation to test, for example, a vehicle controller. A safety metric associated with the vehicle controller can be determined based on the simulation, as well as causes for any failures.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: April 11, 2023
    Assignee: Zoox, Inc.
    Inventors: Gerrit Bagschik, Andrew Scott Crego, Antoine Ghislain Deux, Rodin Lyasoff, James William Vaisey Philbin, Marc Wimmershoff, Andreas Christian Reschka, Ashutosh Gajanan Rege
  • Publication number: 20220260994
    Abstract: A method for autonomously operating a driverless vehicle along a path between a first geographic location and a destination may include receiving communication signals from the driverless vehicle. The communication signals may include sensor data from the driverless vehicle and data indicating occurrence of an event associated with the path. The communication signals may also include data indicating that a confidence level associated with the path is less than a threshold confidence level due to the event. The method may also include determining, via a teleoperations system, a level of guidance to provide the driverless vehicle based on data associated with the communication signals, and transmitting teleoperations signals to the driverless vehicle. The teleoperations signals may include guidance to operate the driverless vehicle according to the determined level of guidance, so that a vehicle controller maneuvers the driverless vehicle to avoid, travel around, or pass through the event.
    Type: Application
    Filed: April 18, 2022
    Publication date: August 18, 2022
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Timothy Caldwell, Marin Kobilarov, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Patent number: 11366471
    Abstract: A driverless vehicle may include a processor, a sensor, a network interface, and a memory having stored thereon processor-executable instructions. The driverless vehicle may be configured to obtain a stream of sensor signals including sensor data related to operation of the driverless vehicle from the sensor and/or the network interface. The driverless vehicle may be configured to determine a confidence level associated with operation of the driverless vehicle from the sensor data, and store the confidence level and at least a portion of the sensor data. The driverless vehicle may also be configured to transmit via the network interface a request for teleoperator assistance, and the request may include the portion of the sensor data and the confidence level.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: June 21, 2022
    Assignee: Zoox, Inc.
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Patent number: 11351995
    Abstract: Techniques for determining an error model associated with a system/subsystem of vehicle controller are discussed herein. To determine whether a complex system (which may be uninspectable) is able to operate safely, errors can be introduced into operating regimes (scenarios) to validate the safe operation of such a system. By comparing captured and/or generated vehicle data with ground truth data, an error of the system can be statistically quantified and modeled. The statistical model can be used to introduce errors to the scenario to perturb the scenario to test, for example, a vehicle controller. Based on a simulation of the vehicle controlled in the perturbed scenario, a safety metric associated with the vehicle controller can be determined, as well as causes for any failures.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: June 7, 2022
    Assignee: Zoox, Inc.
    Inventors: Gerrit Bagschik, Andrew Scott Crego, Antoine Ghislain Deux, Rodin Lyasoff, James William Vaisey Philbin, Marc Wimmershoff, Andreas Christian Reschka, Ashutosh Gajanan Rege, Sai Anurag Modalavalasa
  • Patent number: 11314249
    Abstract: Various embodiments relate generally to autonomous vehicles and associated mechanical, electrical and electronic hardware, computer software and systems, and wired and wireless network communications to provide an autonomous vehicle fleet as a service. More specifically, systems, devices, and methods are configured to initiate modification of trajectories to influence navigation of autonomous vehicles. In particular, a method may include receiving a teleoperation message via a communication link from an autonomous vehicle, detecting data from the teleoperation message specifying an event associated with the autonomous vehicle, identifying one or more courses of action to perform responsive to detecting the data specifying the event, and generating visualization data to present information associated with the event to a display of a teleoperator computing device.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: April 26, 2022
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Ashutosh Gajanan Rege, Rachad Youssef Gamara, Gabriel Thurston Sibley, Timothy David Kentley-Klay, Gary Linscott
  • Patent number: 11307576
    Abstract: A method for autonomously operating a driverless vehicle along a path between a first geographic location and a destination may include receiving communication signals from the driverless vehicle. The communication signals may include sensor data from the driverless vehicle and data indicating occurrence of an event associated with the path. The communication signals may also include data indicating that a confidence level associated with the path is less than a threshold confidence level due to the event. The method may also include determining, via a teleoperations system, a level of guidance to provide the driverless vehicle based on data associated with the communication signals, and transmitting teleoperations signals to the driverless vehicle. The teleoperations signals may include guidance to operate the driverless vehicle according to the determined level of guidance, so that a vehicle controller maneuvers the driverless vehicle to avoid, travel around, or pass through the event.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: April 19, 2022
    Assignee: Zoox, Inc.
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Timothy Caldwell, Marin Kobilarov, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Patent number: 11301767
    Abstract: Systems, methods and apparatus may be configured to implement automatic semantic classification of a detected object(s) disposed in a region of an environment external to an autonomous vehicle. The automatic semantic classification may include analyzing over a time period, patterns in a predicted behavior of the detected object(s) to infer a semantic classification of the detected object(s). Analysis may include processing of sensor data from the autonomous vehicle to generate heat maps indicative of a location of the detected object(s) in the region during the time period. Probabilistic statistical analysis may be applied to the sensor data to determine a confidence level in the inferred semantic classification. The inferred semantic classification may be applied to the detected object(s) when the confidence level exceeds a predetermined threshold value (e.g., greater than 50%).
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: April 12, 2022
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Gabriel Thurston Sibley, Ashutosh Gajanan Rege
  • Patent number: 11188091
    Abstract: Techniques for decimating portions of a map of an environment are discussed herein. The environment can be represented by a three-dimensional (3D) map including a plurality of polygons and semantic information associated with the polygons. In some cases, decimation operations may be based on semantic information associated with the environment. Differing decimation operations and/or levels may be applied to polygons of different semantic classifications or differing contribution levels. Boundaries between regions having different semantic information can be preserved. Meshes can be decimated using different decimation operators or decimation levels and an accuracy of localizing can be compared using the various decimated meshes. An optimal mesh can be selected and sent to vehicles for localizing the vehicles in the environment.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: November 30, 2021
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Ashutosh Gajanan Rege, Brice Rebsamen, Elena Stumm, Nitesh Shroff, Derek Adams
  • Patent number: 11163859
    Abstract: A computer system comprising a processor and a memory for storing instructions, that when executed by the processor performs a copy protection method. The copy protection method comprises executing a software loop of a first software application in a first operating system. A first call is executed in the software loop to a code portion. A decrypted code portion of the first software application is executed in a second operating system in response to the first call. The code portion is decrypted in response to a successful validation of the first software application.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: November 2, 2021
    Assignee: NVIDIA Corporation
    Inventors: Anthony Michael Tamasi, Timothy Paul Lottes, Bojan Skaljak, Fedor Fomichev, Andrew Leighton Edelsten, Jay Huang, Ashutosh Gajanan Rege, Keith Brian Galocy
  • Patent number: 11061398
    Abstract: A system, an apparatus or a process may be configured to implement an application that applies artificial intelligence and/or machine-learning techniques to predict an optimal course of action (or a subset of courses of action) for an autonomous vehicle system (e.g., one or more of a planner of an autonomous vehicle, a simulator, or a teleoperator) to undertake based on suboptimal autonomous vehicle performance and/or changes in detected sensor data (e.g., new buildings, landmarks, potholes, etc.). The application may determine a subset of trajectories based on a number of decisions and interactions when resolving an anomaly due to an event or condition. The application may use aggregated sensor data from multiple autonomous vehicles to assist in identifying events or conditions that might affect travel (e.g., using semantic scene classification). An optimal subset of trajectories may be formed based on recommendations responsive to semantic changes (e.g., road construction).
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: July 13, 2021
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Gabriel Thurston Sibley, Ashutosh Gajanan Rege
  • Patent number: 11022970
    Abstract: A system, an apparatus or a process may be configured to implement an application that applies artificial intelligence and/or machine-learning techniques to predict an optimal course of action (or a subset of courses of action) for an autonomous vehicle system (e.g., one or more of a planner of an autonomous vehicle, a simulator, or a teleoperator) to undertake based on suboptimal autonomous vehicle performance and/or changes in detected sensor data (e.g., new buildings, landmarks, potholes, etc.). The application may determine a subset of trajectories based on a number of decisions and interactions when resolving an anomaly due to an event or condition. The application may use aggregated sensor data from multiple autonomous vehicles to assist in identifying events or conditions that might affect travel (e.g., using semantic scene classification). An optimal subset of trajectories may be formed based on recommendations responsive to semantic changes (e.g., road construction).
    Type: Grant
    Filed: July 22, 2019
    Date of Patent: June 1, 2021
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Gabriel Thurston Sibley, Ashutosh Gajanan Rege
  • Patent number: 10976732
    Abstract: A teleoperator device may be configured to obtain a request for teleoperator assistance from a driverless vehicle and obtain teleoperator data in response to the request. The teleoperator device may also be configured to record at least some of the teleoperator input and/or guidance transmitted to the driverless vehicle based on the teleoperator input. Upon receiving a subsequent request, the teleoperator device may be configured to reproduce at least part of the former teleoperator input and/or to provide an option to activate guidance associated with the teleoperator input. The teleoperator device may also be configured to train a model and/or use a model to determine from vehicle data an option for presentation via a teleoperator interface and/or a presentation configuration of the teleoperator interface.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: April 13, 2021
    Assignee: Zoox, Inc.
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Publication number: 20210094540
    Abstract: Techniques for determining an error model associated with a system/subsystem of vehicle controller are discussed herein. To determine whether a complex system (which may be uninspectable) is able to operate safely, errors can be introduced into operating regimes (scenarios) to validate the safe operation of such a system. By comparing captured and/or generated vehicle data with ground truth data, an error of the system can be statistically quantified and modeled. The statistical model can be used to introduce errors to the scenario to perturb the scenario to test, for example, a vehicle controller. Based on a simulation of the vehicle controlled in the perturbed scenario, a safety metric associated with the vehicle controller can be determined, as well as causes for any failures.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 1, 2021
    Inventors: Gerrit Bagschik, Andrew Scott Crego, Antoine Ghislain Deux, Rodin Lyasoff, James William Vaisey Philbin, Marc Wimmershoff, Andreas Christian Reschka, Ashutosh Gajanan Rege, Sai Anurag Modalavalasa
  • Publication number: 20210096571
    Abstract: Techniques for determining an error model based on vehicle data and ground truth data are discussed herein. To determine whether a complex system (which may be not capable of being inspected) is able to operate safely, various operating regimes (scenarios) can be identified based on operating data. To provide safe operation of such a system, an error model can be determined that can provide a probability associated with perception data and a vehicle can determine a trajectory based on the probability of an error associated with the perception data.
    Type: Application
    Filed: December 9, 2019
    Publication date: April 1, 2021
    Inventors: Sai Anurag Modalavalasa, Gerrit Bagschik, Andrew Scott Crego, Antoine Ghislain Deux, Rodin Lyasoff, James William Vaisey Philbin, Ashutosh Gajanan Rege, Andreas Christian Reschka, Marc Wimmershoff
  • Publication number: 20210097148
    Abstract: Techniques for determining a safety metric associated with a vehicle controller are discussed herein. To determine whether a complex system (which may be uninspectable) is able to operate safely, various operating regimes (scenarios) can be identified based on operating data and associated with a scenario parameter to be adjusted. To validate safe operation of such a system, a scenario may be identified for inspection. Error metrics of a subsystem of the system can be quantified. The error metrics, in addition to stochastic errors of other systems/subsystems can be introduced to the scenario. The scenario parameter may also be perturbed. Any multitude of such perturbations can be instantiated in a simulation to test, for example, a vehicle controller. A safety metric associated with the vehicle controller can be determined based on the simulation, as well as causes for any failures.
    Type: Application
    Filed: September 27, 2019
    Publication date: April 1, 2021
    Inventors: Gerrit Bagschik, Andrew Scott Crego, Antoine Ghislain Deux, Rodin Lyasoff, James William Vaisey Philbin, Marc Wimmershoff, Andreas Christian Reschka, Ashutosh Gajanan Rege
  • Patent number: 10884428
    Abstract: Techniques for decimating portions of a map of an environment are discussed herein. The environment can be represented by a three-dimensional (3D) map including a plurality of polygons and semantic information associated with the polygons. In some cases, decimation operations may be based on semantic information associated with the environment. Differing decimation operations and/or levels may be applied to polygons of different semantic classifications or differing contribution levels. Boundaries between regions having different semantic information can be preserved. Meshes can be decimated using different decimation operators or decimation levels and an accuracy of localizing can be compared using the various decimated meshes. An optimal mesh can be selected and sent to vehicles for localizing the vehicles in the environment.
    Type: Grant
    Filed: March 6, 2018
    Date of Patent: January 5, 2021
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Ashutosh Gajanan Rege, Brice Rebsamen, Elena Stumm, Nitesh Shroff, Derek Adams
  • Publication number: 20200225659
    Abstract: A method for autonomously operating a driverless vehicle along a path between a first geographic location and a destination may include receiving communication signals from the driverless vehicle. The communication signals may include sensor data from the driverless vehicle and data indicating occurrence of an event associated with the path. The communication signals may also include data indicating that a confidence level associated with the path is less than a threshold confidence level due to the event. The method may also include determining, via a teleoperations system, a level of guidance to provide the driverless vehicle based on data associated with the communication signals, and transmitting teleoperations signals to the driverless vehicle. The teleoperations signals may include guidance to operate the driverless vehicle according to the determined level of guidance, so that a vehicle controller maneuvers the driverless vehicle to avoid, travel around, or pass through the event.
    Type: Application
    Filed: March 30, 2020
    Publication date: July 16, 2020
    Inventors: Amanda Lee Kelly Lockwood, Ravi Gogna, Gary Linscott, Timothy Caldwell, Marin Kobilarov, Paul Orecchio, Dan Xie, Ashutosh Gajanan Rege, Jesse Sol Levinson
  • Patent number: 10699477
    Abstract: Techniques for generating maps without shadows are discussed herein. A plurality of images can be captured by a vehicle traversing an environment representing various perspectives and/or lighting conditions in the environment. A shadow within an image can be identified by a machine learning algorithm trained to detect shadows in images and/or by projecting the image onto a three-dimensional (3D) map of the environment and identifying candidate shadow regions based on the geometry of the 3D map and the location of the light source. Shadows can be removed or minimized by utilizing blending or duplicating techniques. Color information and reflectance information can be added to the 3D map to generate a textured 3D map. A textured 3D map without shadows can be used to simulate the environment under different lighting conditions.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: June 30, 2020
    Assignee: Zoox, Inc.
    Inventors: Jesse Sol Levinson, Ashutosh Gajanan Rege, Brice Rebsamen, Elena Stumm, Nitesh Shroff, Derek Adams