Patents by Inventor Ashwin Kottilvalappil VIJAYAN

Ashwin Kottilvalappil VIJAYAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11743080
    Abstract: A linear retimer includes an equalizer, a clock recovery circuit, a sample and hold (S/H) circuit, and a linear driver. The equalizer receives an input signal and outputs an equalized signal. The clock recovery circuit receives the equalized signal and outputs a clock signal. The S/H circuit receives the equalized signal and the clock signal and outputs a retimed signal. The linear driver receives the retimed signal and outputs a recovered signal. The S/H circuit is configured to preserve a voltage of the equalized signal in the retimed signal. In some examples, the S/H circuit is part of a linear three-tap feedforward equalizer, and the linear driver receives an output of the feedforward equalizer. The linear retimer can be placed between a transmitter and a channel or after the channel.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: August 29, 2023
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Abishek Manian, Amit Rane, Ashwin Kottilvalappil Vijayan
  • Patent number: 11539555
    Abstract: An N-tap feedforward equalizer (FFE) comprises a set of N FFE taps coupled together in parallel, a filter coupled between the (N?1)th FFE tap and the Nth FFE tap, and a summer coupled to an output of the set of N FFE taps. Each FFE tap includes a unique sample-an-hold (S/H) circuit that generates a unique time-delayed signal and a unique transconductance stage that generates a unique transconductance output based on the unique time-delayed signal. The filter causes the N-tap FFE to have the behavior of greater than N taps. In some examples, the filter is a first order high pass filter that causes coefficients greater than N to have an opposite polarity of the Nth coefficient. In some examples, the filter is a first order low pass filter that causes coefficients greater than N to have the same polarity as the Nth coefficient.
    Type: Grant
    Filed: November 12, 2020
    Date of Patent: December 27, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Abishek Manian, Ashwin Kottilvalappil Vijayan, Amit Rane, Ashkan Roshan Zamir
  • Publication number: 20210409246
    Abstract: An N-tap feedforward equalizer (FFE) comprises a set of N FFE taps coupled together in parallel, a filter coupled between the (N?1)th FFE tap and the Nth FFE tap, and a summer coupled to an output of the set of N FFE taps. Each FFE tap includes a unique sample-an-hold (S/H) circuit that generates a unique time-delayed signal and a unique transconductance stage that generates a unique transconductance output based on the unique time-delayed signal. The filter causes the N-tap FFE to have the behavior of greater than N taps. In some examples, the filter is a first order high pass filter that causes coefficients greater than N to have an opposite polarity of the Nth coefficient. In some examples, the filter is a first order low pass filter that causes coefficients greater than N to have the same polarity as the Nth coefficient.
    Type: Application
    Filed: November 12, 2020
    Publication date: December 30, 2021
    Inventors: Abishek MANIAN, Ashwin Kottilvalappil VIJAYAN, Amit RANE, Ashkan ROSHAN ZAMIR
  • Publication number: 20210409248
    Abstract: A linear retimer includes an equalizer, a clock recovery circuit, a sample and hold (S/H) circuit, and a linear driver. The equalizer receives an input signal and outputs an equalized signal. The clock recovery circuit receives the equalized signal and outputs a clock signal. The S/H circuit receives the equalized signal and the clock signal and outputs a retimed signal. The linear driver receives the retimed signal and outputs a recovered signal. The S/H circuit is configured to preserve a voltage of the equalized signal in the retimed signal. In some examples, the S/H circuit is part of a linear three-tap feedforward equalizer, and the linear driver receives an output of the feedforward equalizer. The linear retimer can be placed between a transmitter and a channel or after the channel.
    Type: Application
    Filed: October 28, 2020
    Publication date: December 30, 2021
    Inventors: Abishek MANIAN, Amit RANE, Ashwin Kottilvalappil VIJAYAN